US009311095B2

a2 United States Patent

Gschwind et al.

US 9,311,095 B2
*Apr. 12, 2016

(10) Patent No.:
(45) Date of Patent:

(54) USING REGISTER LAST USE INFORMATION
TO PERFORM DECODE TIME COMPUTER
INSTRUCTION OPTIMIZATION

(71) Applicant: International Business Machines

Corporation, Armonk, NY (US)

(72) Michael K Gschwind, Chappaqua, NY

(US); Valentina Salapura, Chappaqua,

NY (US)

Inventors:

International Business Machines
Corporation, Armonk, NY (US)

(73) Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

@
(22)

Appl. No.: 14/099,313

Filed: Dec. 6, 2013

(65) Prior Publication Data

US 2014/0108771 Al Apr. 17, 2014

Related U.S. Application Data

Continuation of application No. 13/251,486, filed on
Oct. 3, 2011.

(63)

Int. Cl1.
GO6F 9/30
GO6F 9/38
U.S. CL
CPC ... GO6F 9/30181 (2013.01); GOG6F 9/3017
(2013.01); GO6F 9/30167 (2013.01); GO6F
9/384 (2013.01); GO6F 9/3832 (2013.01);
GO6F 9/3851 (2013.01)

(51)
(2006.01)
(2006.01)

(52)

(58) Field of Classification Search
CPC .ottt GOG6F 9/30185
USPC ottt 712/226
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,095,526 A
5,163,139 A
5,201,056 A *
5,303,358 A

3/1992 Baum

11/1992 Haigh et al.
4/1993 Daniel etal. ..o 712/41
4/1994 Baum

(Continued)

FOREIGN PATENT DOCUMENTS

EP 0780760 A2
JP 2007304663 11/2007
WO WO 00/34844 6/2000

OTHER PUBLICATIONS

6/1997

Zyuban et al “Inherently Lower-Power High-Performance
Superscalar Architectures”, IEEE Transactions on Computers, vol.
50, No. 3, Mar. 2001, pp. 268-285.

(Continued)

Primary Examiner — Eric Coleman
(74) Attorney, Agent, or Firm — William A. Kinnaman, Jr.

(57) ABSTRACT

Two computer machine instructions are fetched for execu-
tion, but replaced by a single optimized instruction to be
executed, wherein a temporary register used by the two
instructions is identified as a last-use register, where a last-use
register has a value that is not to be accessed by later instruc-
tions, whereby the two computer machine instructions are
replaced by a single optimized internal instruction for execu-
tion, the single optimized instruction not including the last-
use register.

16 Claims, 11 Drawing Sheets

401
-Cache
i
Instruction 0 (10) | instruction 1 (14)
402 408
Decoder 0 \‘Decoder !
B,
Instruction
Instruction | 405 A07 Decoder
Decoder 412]
411 , on
] 1Operand & instruction info 413
N Operand:
Operand: Optimization Resource-
416 ~Wi|__Resource- Analysis properies
properties Nl o Engine specifiers
specifiers {ORE) instruction type
instruction type 409 puozzororavevnveeny:
tnstruction || } t — lnst‘rur_:tion
Optimizer Optimizer
" * 766 408
;410
ad_ B
i V
415

419

US 9,311,095 B2

Page 2
(56) References Cited 2009/0019263 Al 1/2009 Shen et al.
2009/0055631 Al 2/2009 Burky et al.
U.S. PATENT DOCUMENTS 2009/0198986 Al 8/2009 Kissell
2010/0064119 Al 3/2010 Arakawa
5,737,629 A 4/1998 Zuraski, Jr. etal. 2010/0095286 Al 4/2010 Kaplan
5794010 A * 81998 Worrelletal. ...ccooov.n...... 703/20 2010/0312991 Al 12/2010 Norden et al.
6.094.719 A 7/2000 Panwar 2010/0332803 Al 12/2010 Yoshida et al.
6,167.505 A 12/2000 Kubota et al. 2011/0087865 Al 4/2011 Barrick et al.
6,189,088 Bl 2/2001 Gschwind 2011/0099333 Al 4/2011 Sprangle et al.
6,301,651 Bl 10/2001 Chang et al.
6,308,258 B1 10/2001 Kubota et al. OTHER PUBLICATIONS
6,314,511 B2 11/2001 Levy et al. Svransky et al. “Lazy Retirement: A Power Aware Register Manage-
6,349,383 Bl 2/2002 Colet al.
6.393.579 Bl 5/2002 Piazza ment Mechanism”, Workshop on Complexity Efficient Design, 2002,
6,449,710 Bl 9/2002 Isaman pp. 1-9.
6,463,525 B1* 10/2002 Prabhu 712/222 Franklin et al. “Register Traffic Analysis for Streamlining Inter-
6,651,160 B1* 11/2003 Haysccccoevvirvrireennn. 712/210 Operation Communication in Fine-Grain Parallel Processors”, IEEE,
6,687,806 Bl 2/2004 McGrath SIGMICRO Newsletter 23, Dec. 1992, pp. 236-245.
6,748,519 Bl 6/2004 Moore Ponomarev et al. “Isolating Short-Lived Operands for Energy Reduc-
6,950,926 Bl 9/2005 Menezes tion”, IEEE Transactions on Computers, vol. 53, No. 6, Jun. 2004, pp.
7,131,017 B2 10/2006 Schmit et al. 697-709.
7,228,403 B2 6/2007 Leber et al. Lozano et al. “Exploiting Short-Lived Variables in Superscalar Pro-
7,487,338 B2 2/2009 Matsuo cessors”, 1995 Proceedings of MICRO-28, pp. 292-302.
7,500,126 B2 3/2009 Terechko et al. Shrivastava et al. “Compilation Framework for Code Size Reduction
7,669,038 B2 2/2010 Burky et al. Using Reduced Bit-Width ISAs”, ACM Transactions on Design
7,676,653 B2 3/2010 May_ Automation of Electronic Systems, vol. 11, Issue 1, Jan. 2006.
7,739,442 B2 6/2010 Gonion : « :
Bednarski et al. “Energy-Optimal Integrated VLIW Code Genera-
7,739,482 B2 6/2010 Nguyen et al. ion”. P & £1 1th Worksh C ilers for Parallel C
7.769.885 Bl 82010 Kompella tion”, Proceedings of 1 1th Workshop on Compilers for Parallel Com-
7,805,536 Bl 9/2010 Kompella puters, 2004, pp. 1-14. _ _
7,827,388 B2 11/2010 Ward, III et al. Zeng et al. “Register File Caching for Energy Efficiency”, 2010 43rd
7,941,651 Bl 5/2011 Toll et al. Annual IEEE ACM International Symposium on Microarchitecture
7,975,134 B2 7/2011 Gonion (MICRO), Dec. 2010, pp. 301-312.
2001/0052063 Al 12/2001 Tremblay et al. Tan et al. “Register Caching as a Way of Mitigating Intercluster
2002/0087955 Al* 7/2002 Ronen et al. i 717/151 Communication Penalties in Clustered Microarchtectures”, 2008
2002/0116599 Al 8/2002 Kainaga et al. International Conference on Computing and Electrical Engineering,
2002/0124155 Al 9/2002 Sami et al. _
Dec. 2008, pp. 194-198.
2003/0154419 Al 8/2003 Zang etal. Shioya et al. “Register Cache System not for Latency Reduction
2003/0236965 Al 12/2003 Sheaffer » : :
. Purpose”, 2010 43rd Annual IEEE ACM International Symposium
2004/0064680 Al 4/2004 Kadambi et al. Mi hitecture. Dec. 2010 301312
2005/0251662 Al 11/2005 Samra on Microarehutecture, Jec. 271, pp. 50 1o 1s:
2006/0174089 Al 8/2006 Altman et al. Cruz et al. “Multiple-Banked Register File Architecture”, Proceed-
2006/0190710 Al 8/2006 Rychlik ings of the 27th International Symposium on Computer Architecture,
2008/0016324 Al 1/2008 Burky et al. Jun. 2000, pp. 316-325.
2008/0022044 Al 1/2008 Nunamaker et al. Butts et al. “Use-Based Register Caching with Decoupled Indexing”,
2008/0133893 Al 6/2008 Glew Proceedings of the 31st Annual Symposium on Computer Architec-
2008/0148022 Al 6/2008 Piry et al. ture, Jun. 2004, pp. 1-12.
2008/0282066 Al 11/2008 May
2009/0019257 Al 1/2009 Shen et al. * cited by examiner

US 9,311,095 B2

Sheet 1 of 11

Apr. 12,2016

U.S. Patent

Y3LNdROT
F10H3Y

2

A

s
AHOMIIN

&

s mesnn e

DL
9 ;@ﬁ, §7T 2y ¥er
AY1SIa 4PWIAAS | | 3snow | | Tivasoval OHvOBATY
& & & & 4
¥ ¥

5T cel
e M31dvay »
: : AV1d5Hd JOVRIING ¥ISH

it

4

.

SO

ber
Y3170V
Y OINANO

qrr

M31dvay O/

yiT
Hvy

ort
42

001"

U.S. Patent Apr. 12,2016 Sheet 2 of 11 US 9,311,095 B2
C |
i [iNsTRUCTON FETCH-DECODE |
| CACHF UNIT !
1 206 208 |
| |
P |
| sr\ss{'}rﬁgﬁpw |
4. LRSI o t
oy | B ,
QUE}M»-\ N §
|
S |
z UNT |
f 1 |
Fnn e e v e e vy A — 7 — a7t o v —d
{
R y H’“““‘i
; SROHTECIED UNITED MAIN MAPPER WTERMEDITE | |
HREGISTER 218 REGISTER |
A - wr SN - B ale]
L MAPEER FREE REGISTER LiST SN
L 219 £eV ;
P | |
L e .
i . ¥ . é y
j) ISSUE QUELE COMPLETION
25 L wm BT
MUX 223 21
£
l —
24 - i e i T el - -1
N s |1 FECEER REGEIER |
wm'& CACHF Mi UNH ‘ - UN%T} § ; ;g-z[& & 8 g%g i"““
a%4 i ; !
é_\:i | 2..5.&9 .2_5..@ E ! &40 RAZAL ;
L_m mmmmmmm e e nd Lm$ mmmmm %mg

U.S. Patent Apr. 12,2016 Sheet 3 of 11 US 9,311,095 B2

-301
‘.

MEMORY SUBSYSTEM

“I{G ¥ ¥ 304 ¥ i y""mg
S INSTRUCTION CACHE DATA CACHE
. oy
. F mv"*"“‘:ﬂ(}f:
INSTRUCTION QUEUE
x,/'{jzz
. [T T T S e e
REGISTER FREE—REGISTERS ﬁ i
MAP TABLE QUEUE , ;
, | |
: { 328 | ;
394@ ¥ 4 f ¥ E ‘
TN DISPATCH RETIREMENT ; |
TABLE QUEUE f g
|
ISR SN N R
| 31’»\&. v r r 328 1
| REGISTER IN-ORDER }
! FILE MAP TABLE |
{ .
E ., T P
| 309 AN R0
; E% Vi Xy a4 $¥
i 83U FU | eee FU MU | e FU
- EENEE mh
' | | ! ;
:__H IS S S S S

US 9,311,095 B2

Sheet 4 of 11

Apr. 12,2016

U.S. Patent

- By
Gip vy 9id
_ gy
Oly/ et
80y a0y :
meN_Ean szwdo
LOION.AS U] UOIOnSUY
..... 607 odk uomonnsy
{adA) uogenisul | (vl 24 r%wmﬁwm%m
sigyoads L2Y0 i :
| cowedou 2uou3 soedod |
,moS.Mwwmx 4 sishieuy -soinosey |l 9bY
: uoieziiund N4 H
¥ puesedo ! e 20 |
SLp | Frfers
v | Ojul boionysul P puessdg | | Ly
Zly
ispooag

lapoosg

L Jepooeq

uononysyy | L0¥

£

oy

™~

GOP | UOIIDNnasu;

0

18pooa

{11) L uoponasyy

(01} 0 uoonLSU]

24080

L0V

b4

US 9,311,095 B2

Sheet 5 of 11

Apr. 12,2016

U.S. Patent

g% "Oid
HITHONI ¥AAHO-40-LNO
31ND3X3 31N03X3
M \ Gy
- 2l Zvd |z | 2do gl _N<m z1d XZdO
ﬁ%m Lid | 1dO L] .Em L1 | LdO
vz

oz¥ ﬂ
m

(44

HAZINILLO

72y %
|

AREA 2RISR~ IR0
Witvd Lid | 1dO

US 9,311,095 B2

Sheet 6 of 11

Apr. 12,2016

U.S. Patent

FA% 4

oy

o

a7 Ol

HIAHO-NI H¥3I0H0-40-1N0
31LN03IXT 31N03X3
- o
zad zvd 121y | 2d0 L8Y 28y |1y gLd Kedo oty
wmtﬂw Lid | 1dO | LAy | v L | 1do
£ A) yED
| 7=l 1Y
ON SIA
T T
K F1EVZINILGO
eop
HIZINILLO
zzl ﬁ
I o
Lo £EY VY Tl | 2dO |
vas v LI | 1do
0Ly

US 9,311,095 B2

Sheet 7 of 11

Apr. 12,2016

U.S. Patent

av "Old NOILONHLSN] I1ONIS
NOILONN g 4
oLLonn 2l Zvd ZNd | €40
ZLH WHO4M3d HITHONI A
: 41N03X3
ﬁ%ﬂ. 2l |2vd Wiy | 2do
oY s
L1 | LdO
oty A
f
RATEIREY
o S3A

ISNASYT.

\p

ey

Lpp

F1EVZINILL40 /

HFZINILLO

¢ty

%

——

=

b

o) AN AR

f
:

Opy

US 9,311,095 B2

Sheet 8 of 11

Apr. 12,2016

U.S. Patent

NOILONNA
ISN-LEY T |
2V WHO Y3
ANV 31n03x3 H30HON!
. 31N03x3
w.!. Zaxl.zvd Zid | zdo
LGP
Lg w LYY L1d | 140
a5Y

ELAIE

/_ Lay]

NOLLONHLSNI TDNIS

EIIRRI S P — _
284 |.2vd| Ty | ZdO |

bed HUd | a0

%14

¥
H
14

517

Z8d| LY |21 | X2dO
ZvH=1 1
ON| |s3A

A

J1EVZINILLO

¢

HAZINILAC

44

ydd

0Gp

GGy

US 9,311,095 B2

Sheet 9 of 11

Apr. 12,2016

U.S. Patent

‘SUOoNSUl
OM} 8U3 JO PESISUL UCIIDNISU
feuseiu psziwndo abuis auy) snexs

505 A

@3% o W
¥

st pueIadso 181 8Y} 18Ul BUILLLIBISD

!
‘pueredo 28n-ISE] B S€ payoads M
|

i

A €05

pugiedo

184y 8Y) Ajosds J0U $20P UOKINSU
feusaiul peziundo 9ibuis sy ulsiaym
'SUDIOTUISUY OM] BY} LD PESEq LIOHONIISW
jeussiur paziwndo 9|8uis 2yl eEeID

b0OS)

i
i
i
1

Jepic wesBoid Ul UoBONNSW PUODSS

2y1 Bupssasd uoRoNNSU 1S} Byl ‘puriade
20JN08 B sk pusiado 151l ay) BuAjnuapi
uoonisy puooes B pue puessdo 1ebie;

E S puetsdo 14y v BuiAjuspr uoyoniisul 1sy
e BuisudiuaD suogonIIsUl OM) B4} UoIRIISUY
reussiul paziwnde e|Buis e o} uoneziwndo

104 S81BpIpUed 8q 0} paulllisiep ale
Panoexe 8¢ 0] SUCHONIISU] OM] B} BuLIRIep

! 205
!

M

UORNTEXE 10)
suooUISUl oM Buidie s

L0%

US 9,311,095 B2

Sheet 10 of 11

Apr. 12,2016

U.S. Patent

“UOIONSU
lewseiu peziwide 8iBuls syl Buinoexs
10§ play BIRIPSLILI PBUIGLIOS BU}

J0 sUg JueopiuBis JSoWw WOl 1oBNgNS
2 SN | B 18y} UCHBDIDW U apinold

0g %
f
|
i

‘aniea sanebau

B Si D|2)} S}BIpaUIt PRLIGLIOD Byl

30 sy weogubs ses; Suluin) pesn
PiSy S1IpsWIL pUODSS 8y Jo ued
ISES| JE S} 40 pisl 2ieipoLUL 18l
ayl Jo ued 1588 1B 84} jBy} QUIULIBISD

£09 i

H

w

‘8,0 Jepuo ybiy $o Jaquiny

pauiuslepaid 2 aARY Plal} S1epalul
PBULIGUIOD 84} 4O Suq weoLiubis 1sow
Buiiio} pisl SigipsuL PUCDSas By o wed
£ 1se9| & 91y 10 Disll S1BIPatUU 1841 atj)

10 Yed 1883} 1 aiy 0} snIsuodsal uoyonsL
jeuialy peziwndo aiBuwis sy ejesun

208

| 00

LUORONASY

jeussjul paziumdo iBuis au 1o pisi
PIRIDSUIL DBUIGUIOD € $1B9ID O} UCHONISL)
PUOSES BU} JO PISY SIRIESWIL DUCDSS B 10
wed B 1SBa| 12 YUM UONONLSU 181 §ul 10 piay
SIRIDBLUL 181} B JO WRd 1588 18 SIBUSIESUCD

US 9,311,095 B2

Sheet 11 of 11

Apr. 12,2016

U.S. Patent

“SUDRONIISLY

DM 2L} JO UORNOBXS J8pIo-Ul UBL
IBUIBl UCHONASU) PUODSS jRUIBY
pazrundo syl pue UONRDNIISU! BUSSIU
154 DY} UBpIO-{0-IN0 'BIN08Xe

904

UOADNLSU Xi2ud

B 51 UORONJISUL 1811 aUl wassuym
‘puesedo esn-jse) S USRSl |

puooas a4 Jo puelado 1844

€04

UORONUSUI [RUISILE PUODSS

paziwndo SU 1o el SIBIPBWILI PALIGLICS
B 81810 0} P91} SlePalULL] PUCOas auy]

30 ped g 183 1 UliM PSIBUDIEDU0D S| pisy
SleipoLUWl 184y By} jo Yed 1Ses| 1B uUBiaym

- ‘UORONASUI PUODSS BYl U0 PISEY UDIONISU

[eLISIUl pUCOes pazikiyde ug ajesio

c04

“UONORIISUL 1Sk
SU} UO DOSE(UONOMSY] [BUISIUI 11 B 918810

(3073

ayl ‘uononygsu sy auyy Ag Ajoeds

0L

jewisli peziudo sbuws papesin syl
Ul PEPNIoUl S/BLUOIOILSUL PUODES 8L} JO [gg
pieoy Je)siBal puooss g puUB UONONASY

LORONIISLY

1844 ay] Jo pray weisibal sy

04 \\m,

BpIo
wesBoud w uoionasw pucoes eyl Buipsossd
uoBonIIsSU! 1siy oyl ‘puessdo auinos

24} 38 puklade 181y 8yl BuAuspt uolonasu
ouooes ey pue puesado sbie; B se puesedo
18114 243 BuIAIUSP] UOHONNSU Sy Su;
Suisudwon SUORONISL OM] DU} ‘UCHONASY)
s peziundo @buls sul o] LolEZILWNGG
10§ seepinued Busg UBLL ISR SUCIONLESU
eusi PazILUNdo OML 0 UONBZILINGD

0] SYIEPIPUED SJR BIB 3PIBY SIZIPRUILL
BPNDL SUOHONIISUL OM) BUI BUILLD)

US 9,311,095 B2

1
USING REGISTER LAST USE INFORMATION
TO PERFORM DECODE TIME COMPUTER
INSTRUCTION OPTIMIZATION

CROSS-REFERENCE TO RELATED
APPLICATION

This is a Continuation application to U.S. patent Ser. No.
13/251,486 “USING REGISTER LAST-USE INFORMA-
TION TO PERFORM DECODE-TIME COMPUTER
INSTRUCTION OPTIMIZATION”, filed Oct. 3, 2011,
which application is incorporated herein by reference.

FIELD OF THE INVENTION

The disclosure relates to the field of processors and, more
particularly, to decode time instruction optimization in a pro-
Cessor.

BACKGROUND

According to Wikipedia, published Aug. 1, 2011 on the
world wide web, “Multithreading Computers” have hardware
support to efficiently execute multiple threads. These are
distinguished from multiprocessing systems (such as multi-
core systems) in that the threads have to share the resources of
a single core: the computing units, the CPU caches and the
translation lookaside buffer (TLB). Where multiprocessing
systems include multiple complete processing units, multi-
threading aims to increase utilization of a single core by using
thread-level as well as instruction-level parallelism. As the
two techniques are complementary, they are sometimes com-
bined in systems with multiple multithreading CPUs and in
CPUs with multiple multithreading cores.

The Multithreading paradigm has become more popular as
efforts to further exploit instruction level parallelism have
stalled since the late-1990s. This allowed the concept of
Throughput Computing to re-emerge to prominence from the
more specialized field of transaction processing:

Even though it is very difficult to further speed up a single
thread or single program, most computer systems are actually
multi-tasking among multiple threads or programs.

Techniques that would allow speed up ofthe overall system
throughput of all tasks would be a meaningful performance
gain.

The two major techniques for throughput computing are
multiprocessing and multithreading.

Some advantages include:

If athread gets a lot of cache misses, the other thread(s) can
continue, taking advantage of the unused computing
resources, which thus can lead to faster overall execution, as
these resources would have been idle if only a single thread
was executed.

If a thread cannot use all the computing resources of the
CPU (because instructions depend on each other’s result),
running another thread permits to not leave these idle.

If several threads work on the same set of data, they can
actually share their cache, leading to better cache usage or
synchronization on its values.

Some criticisms of multithreading include:

Multiple threads can interfere with each other when shar-
ing hardware resources such as caches or translation looka-
side bufters (TLBs).

Execution times of a single thread are not improved but can
be degraded, even when only one thread is executing. This is

15

20

25

35

40

45

50

55

65

2

due to slower frequencies and/or additional pipeline stages
that are necessary to accommodate thread-switching hard-
ware.

Hardware support for multithreading is more visible to
software, thus requiring more changes to both application
programs and operating systems than Multiprocessing.

Types of Multithreading:

Block Multi-Threading Concept

The simplest type of multi-threading occurs when one
thread runs until it is blocked by an event that normally would
create a long latency stall. Such a stall might be a cache-miss
that has to access off-chip memory, which might take hun-
dreds of CPU cycles for the data to return. Instead of waiting
for the stall to resolve, a threaded processor would switch
execution to another thread that was ready to run. Only when
the data for the previous thread had arrived, would the previ-
ous thread be placed back on the list of ready-to-run threads.

For example:

1. Cycle i: instruction j from thread A is issued

2. Cycle i+1: instruction j+1 from thread A is issued

3. Cycle i+2: instruction j+2 from thread A is issued, load
instruction which misses in all caches

4. Cycle i+3: thread scheduler invoked, switches to thread
B

5. Cycle i+4: instruction k from thread B is issued

6. Cycle i+5: instruction k+1 from thread B is issued

Conceptually, it is similar to cooperative multi-tasking
used in real-time operating systems in which tasks voluntarily
give up execution time when they need to wait upon some
type of the event.

This type of multi threading is known as Block or Coop-
erative or Coarse-grained multithreading.

Hardware Cost

The goal of multi-threading hardware support is to allow
quick switching between a blocked thread and another thread
ready to run. To achieve this goal, the hardware cost is to
replicate the program visible registers as well as some pro-
cessor control registers (such as the program counter).
Switching from one thread to another thread means the hard-
ware switches from using one register set to another.

Such Additional Hardware has these Benefits:

The thread switch can be done in one CPU cycle.

It appears to each thread that it is executing alone and not
sharing any hardware resources with any other threads. This
minimizes the amount of software changes needed within the
application as well as the operating system to support multi-
threading.

In order to switch efficiently between active threads, each
active thread needs to have its own register set. For example,
to quickly switch between two threads, the register hardware
needs to be instantiated twice.

EXAMPLES

Many families of microcontrollers and embedded proces-
sors have multiple register banks to allow quick context
switching for interrupts. Such schemes can be considered a
type of block multithreading among the user program thread
and the interrupt threads

Interleaved Multi-Threading

1. Cycle i+1: an instruction from thread B is issued

2. Cycle i+2: an instruction from thread C is issued

The purpose of this type of multithreading is to remove all
data dependency stalls from the execution pipeline. Since one
thread is relatively independent from other threads, there’s
less chance of one instruction in one pipe stage needing an
output from an older instruction in the pipeline.

US 9,311,095 B2

3

Conceptually, it is similar to pre-emptive multi-tasking
used in operating systems. One can make the analogy that the
time-slice given to each active thread is one CPU cycle.

This type of multithreading was first called Barrel process-
ing, in which the staves of a barrel represent the pipeline
stages and their executing threads. Interleaved or Pre-emptive
or Fine-grained or time-sliced multithreading are more mod-
ern terminology.

Hardware Costs

In addition to the hardware costs discussed in the Block
type of multithreading, interleaved multithreading has an
additional cost of each pipeline stage tracking the thread ID of
the instruction it is processing. Also, since there are more
threads being executed concurrently in the pipeline, shared
resources such as caches and TLBs need to be larger to avoid
thrashing between the different threads.

Simultaneous Multi-Threading

Concept

The most advanced type of multi-threading applies to
superscalar processors. A normal superscalar processor
issues multiple instructions from a single thread every CPU
cycle. In Simultaneous Multi-threading (SMT), the supersca-
lar processor can issue instructions from multiple threads
every CPU cycle. Recognizing that any single thread has a
limited amount of instruction level parallelism, this type of
multithreading tries to exploit parallelism available across
multiple threads to decrease the waste associated with unused
issue slots.

For example:

1. Cycle i: instructions j and j+1 from thread A; instruction
k from thread B all simultaneously issued

2. Cyclei+1: instruction j+2 from thread A; instruction k+1
from thread B; instruction m from thread C all simultaneously
issued

3. Cycle i+2: instruction j+3 from thread A: instructions
m+1 and m+2 from thread C all simultaneously issued.

To distinguish the other types of multithreading from SMT,
the term Temporal multithreading is used to denote when
instructions from only one thread can be issued at a time.

Hardware Costs

In addition to the hardware costs discussed for interleaved
multithreading. SMT has the additional cost of each pipeline
stage tracking the Thread ID of each instruction being pro-
cessed. Again, shared resources such as caches and TLBs
have to be sized for the large number of active threads.

According to U.S. Pat. No. 7,827,388 “Apparatus for
adjusting instruction thread priority in a multi-thread proces-
sor” issued Nov. 2, 2010, a assigned to IBM and incorporated
by reference herein, a number of techniques are used to
improve the speed at which data processors execute software
programs. These techniques include increasing the processor
clock speed, using cache memory, and using predictive
branching. Increasing the processor clock speed allows a
processor to perform relatively more operations in any given
period of time. Cache memory is positioned in close proxim-
ity to the processor and operates at higher speeds than main
memory, thus reducing the time needed for a processor to
access data and instructions. Predictive branching allows a
processor to execute certain instructions based on a prediction
about the results of an earlier instruction, thus obviating the
need to wait for the actual results and thereby improving
processing speed.

Some processors also employ pipelined instruction execu-
tion to enhance system performance. In pipelined instruction
execution, processing tasks are broken down into a number of
pipeline steps or stages. Pipelining may increase processing
speed by allowing subsequent instructions to begin process-

25

40

45

50

4

ing before previously issued instructions have finished a par-
ticular process. The processor does not need to wait for one
instruction to be fully processed before beginning to process
the next instruction in the sequence.

Processors that employ pipelined processing may include a
number of different pipeline stages which are devoted to
different activities in the processor. For example, a processor
may process sequential instructions in a fetch stage, decode/
dispatch stage, issue stage, execution stage, finish stage, and
completion stage. Each of these individual stages may
employ its own set of pipeline stages to accomplish the
desired processing tasks.

Multi-thread instruction processing is an additional tech-
nique that may be used in conjunction with pipelining to
increase processing speed. Multi-thread instruction process-
ing involves dividing a set of program instructions into two or
more distinct groups or threads of instructions. This multi-
threading technique allows instructions from one thread to be
processed through a pipeline while another thread may be
unable to be processed for some reason. This avoids the
situation encountered in single-threaded instruction process-
ing in which all instructions are held up while a particular
instruction cannot be executed, such as, for example, in a
cache miss situation where data required to execute a particu-
lar instruction is not immediately available. Data processors
capable of processing multiple instruction threads are often
referred to as simultaneous multithreading (SMT) proces-
SOIS.

It should be noted at this point that there is a distinction
between the way the software community uses the term “mul-
tithreading” and the way the term “multithreading” is used in
the computer architecture community. The software commu-
nity uses the term “multithreading” to refer to a single task
subdivided into multiple, related threads. In computer archi-
tecture, the term “multithreading” refers to threads that may
be independent of each other. The term “multithreading” is
used in this document in the same sense employed by the
computer architecture community.

To facilitate multithreading, the instructions from the dif-
ferent threads are interleaved in some fashion at some point in
the overall processor pipeline. There are generally two differ-
ent techniques for interleaving instructions for processing in
a SMT processor. One technique involves interleaving the
threads based on some long latency event, such as a cache
miss that produces a delay in processing one thread. In this
technique all ofthe processor resources are devoted to a single
thread until processing of that thread is delayed by some long
latency event. Upon the occurrence of the long latency event,
the processor quickly switches to another thread and
advances that thread until some long latency event occurs for
that thread or until the circumstance that stalled the other
thread is resolved.

The other general technique for interleaving instructions
from multiple instruction threads in a SMT processor
involves interleaving instructions on a cycle-by-cycle basis
according to some interleaving rule (also sometimes referred
to herein as an interleave rule). A simple cycle-by-cycle inter-
leaving technique may simply interleave instructions from
the different threads on a one-to-one basis. For example, a
two-thread SMT processor may take an instruction from a
first thread in a first clock cycle, an instruction from a second
thread in a second clock cycle, another instruction from the
first thread in a third clock cycle and so forth, back and forth
between the two instruction threads. A more complex cycle-
by-cycle interleaving technique may involve using software
instructions to assign a priority to each instruction thread and
then interleaving instructions from the different threads to

US 9,311,095 B2

5

enforce some rule based upon the relative thread priorities.
For example, if one thread in a two-thread SMT processor is
assigned a higher priority than the other thread, a simple
interleaving rule may require that twice as many instructions
from the higher priority thread be included in the interleaved
stream as compared to instructions from the lower priority
thread.

A more complex cycle-by-cycle interleaving rule in cur-
rent use assigns each thread a priority from “1” to “7” and
places an instruction from the lower priority thread into the
interleaved stream of instructions based on the function
1/(2IX-Y1+41), where X=the software assigned priority of a
first thread, and Y=the software assigned priority of a second
thread. In the case where two threads have equal priority, for
example, X=3 and Y=3, the function produces a ratio of 1/2,
and an instruction from each of the two threads will be
included in the interleaved instruction stream once out of
every two clock cycles. If the thread priorities differ by 2, for
example, X=2 and Y=4, then the function produces a ratio of
1/8, and an instruction from the lower priority thread will be
included in the interleaved instruction stream once out of
every eight clock cycles.

Using a priority rule to choose how often to include instruc-
tions from particular threads is generally intended to ensure
that processor resources are allotted based on the software
assigned priority of each thread. There are, however, situa-
tions in which relying on purely software assigned thread
priorities may not result in an optimum allotment of processor
resources. In particular, software assigned thread priorities
cannot take into account processor events, such as a cache
miss, for example, that may affect the ability of a particular
thread of instructions to advance through a processor pipe-
line. Thus, the occurrence of some event in the processor may
completely or at least partially defeat the goal of assigning
processor resources efficiently between different instruction
threads in a multi-thread processor.

For example, a priority of 5 may be assigned by software to
a first instruction thread in a two thread system, while a
priority of 2 may be assigned by software to a second instruc-
tion thread. Using the priority rule 1/(21X-YI+1) described
above, these software assigned priorities would dictate that an
instruction from the lower priority thread would be inter-
leaved into the interleaved instruction stream only once every
sixteen clock cycles, while instructions from the higher pri-
ority instruction thread would be interleaved fifteen out of
every sixteen clock cycles. If an instruction from the higher
priority instruction thread experiences a cache miss, the pri-
ority rule would still dictate that fifteen out of every sixteen
instructions comprise instructions from the higher priority
instruction thread, even though the occurrence of the cache
miss could effectively stall the execution of the respective
instruction thread until the data for the instruction becomes
available.

In an embodiment, each instruction thread in a SMT pro-
cessor is associated with a software assigned base input pro-
cessing priority. Unless some predefined event or circum-
stance occurs with an instruction being processed or to be
processed, the base input processing priorities of the respec-
tive threads are used to determine the interleave frequency
between the threads according to some instruction interleave
rule. However, upon the occurrence of some predefined event
or circumstance in the processor related to a particular
instruction thread, the base input processing priority of one or
more instruction threads is adjusted to produce one more
adjusted priority values. The instruction interleave rule is then
enforced according to the adjusted priority value or values

10

15

20

25

30

35

40

45

50

55

60

65

6

together with any base input processing priority values that
have not been subject to adjustment.

Intel® Hyper-threading is described in “Intel® Hyper-
Threading Technology. Technical User’s Guide” 2003 from
Intel® corporation, incorporated herein by reference.
According to the Technical User’s Guide, efforts to improve
system performance on single processor systems have tradi-
tionally focused on making the processor more capable.
These approaches to processor design have focused on mak-
ing it possible for the processor to process more instructions
faster through higher clock speeds, instruction-level parallel-
ism (ILP) and caches. Techniques to achieve higher clock
speeds include pipelining the microarchitecture to finer
granularities, which is also called super-pipelining. Higher
clock frequencies can greatly improve performance by
increasing the number of instructions that can be executed
each second. But because there are far more instructions
being executed in a super-pipelined microarchitecture, han-
dling of events that disrupt the pipeline, such as cache misses,
interrupts and branch mispredictions, is much more critical
and failures more costly. ILP refers to techniques to increase
the number of instructions executed each clock cycle. For
example, many super-scalar processor implementations have
multiple execution units that can process instructions simul-
taneously. In these super-scalar implementations, several
instructions can be executed each clock cycle. With simple
in-order execution, however, it is not enough to simply have
multiple execution units. The challenge is to find enough
instructions to execute. One technique is out-of-order execu-
tion where a large window of instructions is simultaneously
evaluated and sent to execution units, based on instruction
dependencies rather than program order. Accesses to system
memory are slow, though faster than accessing the hard disk,
but when compared to execution speeds of the processor, they
are slower by orders of magnitude. One technique to reduce
the delays introduced by accessing system memory (called
latency) is to add fast caches close to the processor. Caches
provide fast memory access to frequently accessed data or
instructions. As cache speeds increase, however, so does the
problem of heat dissipation and of cost. For this reason,
processors often are designed with a cache hierarchy in which
fast, small caches are located near and operated at access
latencies close to that of the processor core. Progressively
larger caches, which handle less frequently accessed data or
instructions, are implemented with longer access latencies.
Nonetheless, times can occur when the needed data is not in
any processor cache. Handling such cache misses requires
accessing system memory or the hard disk, and during these
times, the processor is likely to stall while waiting for
memory transactions to finish. Most techniques for improv-
ing processor performance from one generation to the next
are complex and often add significant die-size and power
costs. None of these techniques operate at 100 percent effi-
ciency thanks to limited parallelism in instruction flows. As a
result, doubling the number of execution units in a processor
does not double the performance of the processor. Similarly,
simply doubling the clock rate does not double the perfor-
mance due to the number of processor cycles lost to a slower
memory subsystem.

Multithreading

As processor capabilities have increased, so have demands
on performance, which has increased pressure on processor
resources with maximum efficiency. Noticing the time that
processors wasted running single tasks while waiting for
certain events to complete, software developers began won-
dering if the processor could be doing some other work at the
same time.

US 9,311,095 B2

7

To arrive at a solution, software architects began writing
operating systems that supported running pieces of programs,
called threads. Threads are small tasks that can run indepen-
dently. Each thread gets its own time slice, so each thread
represents one basic unit of processor utilization. Threads are
organized into processes, which are composed of one or more
threads. All threads in a process share access to the process
resources.

These multithreading operating systems made it possible
for one thread to run while another was waiting for something
to happen. On Intel processor-based personal computers and
servers, today’s operating systems, such as Microsoft Win-
dows* 2000 and Windows™* XP, all support multithreading. In
fact, the operating systems themselves are multithreaded.
Portions of them can run while other portions are stalled.

To benefit from multithreading, programs need to possess
executable sections that can run in parallel. That is, rather than
being developed as a long single sequence of instructions,
programs are broken into logical operating sections. In this
way, if the application performs operations that run indepen-
dently of each other, those operations can be broken up into
threads whose execution is scheduled and controlled by the
operating system. These sections can be created to do differ-
ent things, such as allowing Microsoft Word* to repaginate a
document while the user is typing. Repagination occurs on
one thread and handling keystrokes occurs on another. On
single processor systems, these threads are executed sequen-
tially, not concurrently. The processor switches back and
forth between the keystroke thread and the repagination
thread quickly enough that both processes appear to occur
simultaneously. This is called functionally decomposed mul-
tithreading.

Multithreaded programs can also be written to execute the
same task on parallel threads. This is called data-decomposed
multithreaded, where the threads differ only in the data that is
processed. For example, a scene in a graphic application
could be drawn so that each thread works on half of the scene.
Typically, data-decomposed applications are threaded for
throughput performance while functionally decomposed
applications are threaded for user responsiveness or function-
ality concerns.

When multithreaded programs are executing on a single
processor machine, some overhead is incurred when switch-
ing context between the threads. Because switching between
threads costs time, it appears that running the two threads this
way is less efficient than running two threads in succession. If
either thread has to wait on a system device for the user,
however, the ability to have the other thread continue operat-
ing compensates very quickly for all the overhead of the
switching. Since one thread in the graphic application
example handles user input, frequent periods when it is just
waiting certainly occur. By switching between threads, oper-
ating systems that support multithreaded programs can
improve performance and user responsiveness, even if they
are running on a single processor system.

In the real world, large programs that use multithreading
often run many more than two threads. Software such as
database engines creates a new processing thread for every
request for a record that is received. In this way, no single I/O
operation prevents new requests from executing and bottle-
necks can be avoided. On some servers, this approach can
mean that thousands of threads are running concurrently on
the same machine.

Multiprocessing

Multiprocessing systems have multiple processors running
at the same time. Traditional Intel® architecture multipro-
cessing systems have anywhere from two to about 512 pro-

20

25

30

35

40

45

50

55

8

cessors. Multiprocessing systems allow different threads to
run on different processors. This capability considerably
accelerates program performance. Now two threads can run
more or less independently of each other without requiring
thread switches to get at the resources of the processor. Mul-
tiprocessor operating systems are themselves multithreaded,
and the threads can use the separate processors to the best
advantage.

Originally, there were two kinds of multiprocessing: asym-
metrical and symmetrical. On an asymmetrical system, one or
more processors were exclusively dedicated to specific tasks,
such as running the operating system. The remaining proces-
sors were available for all other tasks (generally, the user
applications). It quickly became apparent that this configura-
tion was not optimal. On some machines, the operating sys-
tem processors were running at 100 percent capacity, while
the user-assigned processors were doing nothing. In short
order, system designers came to favor an architecture that
balanced the processing load better: symmetrical multipro-
cessing (SMP). The “symmetry” refers to the fact that any
thread—be it from the operating system or the user applica-
tion—can run on any processor. In this way, the total com-
puting load is spread evenly across all computing resources.
Today, symmetrical multiprocessing systems are the norm
and asymmetrical designs have nearly disappeared.

SMP systems use double the number of processors, how-
ever performance will not double. Two factors that inhibit
performance from simply doubling are:

How well the workload can be parallelized

System overhead

Two factors govern the efficiency of interactions between
threads:

How they compete for the same resources

How they communicate with other threads

Multiprocessor Systems

Today’s server applications consist of multiple threads or
processes that can be executed

in parallel. Online transaction processing and Web services
have an abundance of software threads that can be executed
simultaneously for faster performance. Even desktop appli-
cations are becoming increasingly parallel. Intel architects
have implemented thread-level parallelism (TLP) to improve
performance relative to transistor count and power consump-
tion.

In both the high-end and mid-range server markets, multi-
processors have been commonly used to get more perfor-
mance from the system. By adding more processors, applica-
tions potentially get substantial performance improvement by
executing multiple threads on multiple processors at the same
time. These threads might be from the same application, from
different applications running simultaneously, from operat-
ing-system services, or from operating-system threads doing
background maintenance. Multiprocessor systems have been
used for many years, and programmers are familiar with the
techniques to exploit multiprocessors for higher performance
levels.

US Patent Application Publication No. 2011/0087865
“Intermediate Register Mapper” filed Apr. 14, 2011 by Bar-
rick et al. and incorporated herein by reference teaches “A
method, processor, and computer program product employ-
ing an intermediate register mapper within a register renam-
ing mechanism. A logical register lookup determines whether
a hit to a logical register associated with the dispatched
instruction has occurred. In this regard, the logical register
lookup searches within at least one register mapper from a
group of register mappers, including an architected register
mapper, a unified main mapper, and an intermediate register

US 9,311,095 B2

9

mapper. A single hit to the logical register is selected among
the group of register mappers. If an instruction having a
mapper entry in the unified main mapper has finished but has
not completed, the mapping contents of the register mapper
entry in the unified main mapper are moved to the interme-
diate register mapper, and the unified register mapper entry is
released, thus increasing a number of unified main mapper
entries available for reuse.”

U.S. Pat. No. 6,314,511 filed Apr. 2, 1998 “Mechanism for
freeing registers on processors that perform dynamic
out-of-order execution of instructions using renaming
registers” by Levy et al., incorporated by reference
herein teaches “freeing renaming registers that have
been allocated to architectural registers prior to another
instruction redefining the architectural register. Renam-
ing registers are used by a processor to dynamically
execute instructions out-of-order in either a single or
multi-threaded processor that executes instructions out-
of-order. A mechanism is described for freeing renam-
ing registers that consists of a set of instructions, used by
a compiler, to indicate to the processor when it can free
the physical (renaming) register that is allocated to a
particular architectural register. This mechanism per-
mits the renaming register to be reassigned or reallo-
cated to store another value as soon as the renaming
register is no longer needed for allocation to the archi-
tectural register. There are at least three ways to enable
the processor with an instruction that identifies the
renaming register to be freed from allocation: (1) a user
may explicitly provide the instruction to the processor
that refers to a particular renaming register: (2) an oper-
ating system may provide the instruction when a thread
is idle that refers to a set of registers associated with the
thread; and (3) a compiler may include the instruction
with the plurality of instructions presented to the pro-
cessor. There are at least five embodiments of the
instruction provided to the processor for freeing renam-
ing registers allocated to architectural registers: (1) Free
Register Bit; (2) Free Register; (3) Free Mask: (4) Free
Opcode; and (5) Free Opcode/Mask. The Free Register
Bit instruction provides the largest speedup for an out-
of-order processor and the Free Register instruction pro-
vides the smallest speedup.”

“Power ISA™ Version 2.06 Revision B” published Jul. 23,
2010 from IBM® and incorporated by reference herein
teaches an example RISC (reduced instruction set com-
puter) instruction set architecture. The Power ISA will
be used herein in order to demonstrate example embodi-
ments, however, the invention is not limited to Power
ISA or RISC architectures. Those skilled in the art will
readily appreciate use of the invention in a variety of
architectures.

“z/Architecture Principles of Operation” SA22-7832-08,
Ninth Edition (August, 2010) from IBM® and incorporated
by reference herein teaches an example CISC (complex
instruction set computer) instruction set architecture.

SUMMARY

Two computer machine instructions are fetched for execu-
tion, but replaced by a single optimized instruction to be
executed, wherein a temporary register used by the two
instructions is identified as a last-use register, where a last-use
register has a value that is not to be accessed by later instruc-
tions, whereby the two computer machine instructions are

20

40

45

60

10

replaced by a single optimized internal instruction for execu-
tion, the single optimized instruction not including the last-
use register.

In an embodiment, two instructions to be executed are
determined to be candidates for optimization to a single opti-
mized internal instruction, the two instructions comprising a
first instruction identifying a first operand as a target operand
and a second instruction identifying the first operand as a
source operand, the first instruction preceding the second
instruction in program order. The first operand is determined
to be specified as a last-use operand. The single optimized
internal instruction is created based on the two instructions,
wherein the single optimized internal instruction does not
specify the first operand. The single optimized internal
instruction is executed instead of the two instructions.

In an embodiment, the first instruction includes a first
immediate field and the second instruction comprises a sec-
ond immediate field. At least part of the first immediate field
is concatenated with at least a part of the second immediate
field to create a combined immediate field of the single opti-
mized internal instruction.

In an embodiment, the single optimized internal instruc-
tion is created responsive to the at least part of the first
immediate field or the at least a part of the second immediate
field forming most significant bits of the combined immediate
field have a predetermined number of high order 0’s.

In an embodiment, it is determined that the at least part of
the first immediate field or the at least part of the second
immediate field used forming least significant bits of the
combined immediate field is a negative value, and an indica-
tion is provided thata 1 must be subtract from most significant
bits of the combined immediate field for executing the single
optimized internal instruction.

In an embodiment, the first instruction includes a first
immediate field and the second instruction comprises a sec-
ond immediate field. The two instructions to be executed are
determined to be candidates for optimization to two opti-
mized internal instructions rather than being candidates for
optimization to the single optimized internal instruction, the
two instructions comprising the first instruction identifying
the first operand as a target operand and the second instruction
identifying the first operand as the source operand, the first
instruction preceding the second instruction in program
order. A first internal instruction is created based on the first
instruction. At least part of the first immediate field is con-
catenated with at least a part of the second immediate field to
create a combined immediate field of a optimized second
internal instruction wherein out-of-order execution of the first
internal instruction and the optimized internal second instruc-
tion is permitted rather than in-order execution of the two
instructions.

In an embodiment, the first instruction includes a first
register field and the second instruction comprises a second
register field wherein, the first register field and the second
register field are included in the created single optimized
internal instruction.

In an embodiment, the first instruction is a prefix instruc-
tion for specifying the first operand of the second instruction
as a last-use operand.

System and computer program products corresponding to
the above-summarized methods are also described and
claimed herein.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments

US 9,311,095 B2

11

and aspects of the invention are described in detail herein and
are considered a part of the claimed invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The foregoing and other
objects, features, and advantages of the invention are apparent
from the following detailed description taken in conjunction
with the accompanying drawings in which:

FIG. 1 depicts an example processor system configuration;

FIG. 2 depicts a first example processor pipeline;

FIG. 3 depicts a second example processor pipeline;

FIG. 4A depicts an example optimization analysis engine
environment:

FIGS. 4B-4E depicts example optimization;

FIG. 5 is an example flowchart depicting aspects of the
invention;

FIG. 6 is an example flowchart depicting aspects of the
invention; and

FIG. 7 is an example flowchart depicting aspects of the
invention.

DETAILED DESCRIPTION

An Out of Order (OoQ) processor typically contains mul-
tiple execution pipelines that may opportunistically execute
instructions in a different order than what the program
sequence (or “program order”) specifies in order to maximize
the average instruction per cycle rate by reducing data depen-
dencies and maximizing utilization of the execution pipelines
allocated for various instruction types. Results of instruction
execution are typically held temporarily in the physical reg-
isters of one or more register files of limited depth. An OoO
processor typically employs register renaming to avoid
unnecessary serialization of instructions due to the reuse of a
given architected register by subsequent instructions in the
program order.

According to Barrick, under register renaming operations,
each architected (i.e., logical) register targeted by an instruc-
tion is mapped to a unique physical register in a register file.
In current high-performance OoO processors, a unified main
mapper is utilized to manage the physical registers within
multiple register files. In addition to storing the logical-to-
physical register translation (i.e., in mapper entries), the uni-
fied main mapper is also responsible for storing dependency
data (i.e., queue position data), which is important for instruc-
tion ordering upon completion.

In a unified main mapper-based renaming scheme, it is
desirable to free mapper entries as soon as possible for reuse
by the 00O processor. However, in the prior art, a unified
main mapper entry cannot be freed until the instruction that
writes to a register mapped by the mapper entry is completed.
This constraint is enforced because, until completion, there is
a possibility that an instruction that has “finished” (i.e., the
particular execution unit (EU) has successfully executed the
instruction) will still be flushed before the instruction can
“complete” and before the architected, coherent state of the
registers is updated.

In current implementations, resource constraints at the uni-
fied main mapper have generally been addressed by increas-
ing the number of unified main mapper entries. However,
increasing the size of the unified main mapper has a concomi-
tant penalty in terms of die area, complexity, power consump-
tion, and access time.

10

15

20

25

30

35

40

45

50

55

60

65

12

In Barrick, there is provided a method for administering a
set of one or more physical registers in a data processing
system. The data processing system has a processor that pro-
cesses instructions out-of-order, wherein the instructions ref-
erence logical registers and wherein each of the logical reg-
isters is mapped to the set of one or more physical registers. In
response to dispatch of one or more of the instructions, a
register management unit performs a logical register lookup,
which determines whether a hit to alogical register associated
with the dispatched instruction has occurred within one or
more register mappers. In this regard, the logical register
lookup searches within at least one register mapper from a
group of register mappers, including an architected register
mapper, a unified main mapper, and an intermediate register
mapper. The register management unit selects a single hit to
the logical register among the group of register mappers. [f an
instruction having a mapper entry in the unified main mapper
has finished but has not completed, the register management
unit moves logical-to-physical register renaming data of the
unified main mapping entry in the unified main mapper to the
intermediate register mapper, and the unified main mapper
releases the unified main mapping entry prior to completion
of the instruction. The release of the unified main mapping
entry increases a number of unified main mapping entries
available for reuse.

With reference now to the figures, and in particular to FIG.
1, an example is shown of a data processing system 100 which
may include an OoQO processor employing an intermediate
register mapper as described below with reference to FIG. 2.
As shown in FIG. 1, data processing system 100 has a central
processing unit (CPU) 110, which may be implemented with
processor 200 of FIG. 2. CPU 110 is coupled to various other
components by an interconnect 112. Read only memory
(“ROM”) 116 is coupled to the interconnect 112 and includes
a basic input/output system (“BIOS”) that controls certain
basic functions of the data processing system 100. Random
access memory (“RAM”) 114. I/O adapter 118, and commu-
nications adapter 134 are also coupled to the system bus 112.
1/O adapter 118 may be a small computer system interface
(“SCSI”) adapter that communicates with a storage device
120. Communications adapter 134 interfaces interconnect
112 with network 140, which enables data processing system
100 to communicate with other such systems, such as remote
computer 142. Input/Output devices are also connected to
interconnect 112 via user interface adapter 122 and display
adapter 136. Keyboard 124, track ball 132, mouse 126 and
speaker 128 are all interconnected to bus 112 via user inter-
face adapter 122. Display 138 is connected to system bus 112
by display adapter 136. In this manner, data processing sys-
tem 100 receives input, for example, throughout keyboard
124, trackball 132, and/or mouse 126 and provides output, for
example, via network 142, on storage device 120, speaker 128
and/or display 138. The hardware elements depicted in data
processing system 100 are not intended to be exhaustive, but
rather represent principal components of a data processing
system in one embodiment.

Operation of data processing system 100 can be controlled
by program code, such as firmware and/or software, which
typically includes, for example, an operating system such as
AIX® (“AIX” is a trademark of the IBM Corporation) and
one or more application or middleware programs. Such pro-
gram code comprises instructions discussed below with ref-
erence to FIG. 2.

Referring now to FIG. 2, there is depicted a superscalar
processor 200. Instructions are retrieved from memory (e.g.
RAM 114 of FIG. 1) and loaded into instruction sequencing
logic (ISL) 204, which includes Level 1 Instruction cache (.1

US 9,311,095 B2

13

I-cache) 206, fetch-decode unit 208, instruction queue 210
and dispatch unit 212. Specifically, the instructions are loaded
in L1 I-cache 206 of ISL 204. The instructions are retained in
L I-cache 206 until they are required, or replaced if they are
not needed. Instructions are retrieved from L1 I-cache 206
and decoded by fetch-decode unit 208. After decoding a
current instruction, the current instruction is loaded into
instruction queue 210. Dispatch unit 212 dispatches instruc-
tions from instruction queue 210 into register management
unit 214, as well as completion unit 240. Completion unit 240
is coupled to general execution unit 224 and register manage-
ment unit 214, and monitors when an issued instruction has
completed.

When dispatch unit 212 dispatches a current instruction,
unified main mapper 218 of register management unit 214
allocates and maps a destination logical register number to a
physical register within physical register files 232a-232# that
is not currently assigned to a logical register. The destination
is said to be renamed to the designated physical register
among physical register files 232a-232x. Unified main map-
per 218 removes the assigned physical register from a list 219
of free physical registers stored within unified main mapper
218. All subsequent references to that destination logical
register will point to the same physical register until fetch-
decode unit 208 decodes another instruction that writes to the
same logical register. Then, unified main mapper 218
renames the logical register to a different physical location
selected from free list 219, and the mapper is updated to enter
the new logical-to-physical register mapper data. When the
logical-to-physical register mapper data is no longer needed,
the physical registers of old mappings are returned to free list
219. If free physical register list 219 does not have enough
physical registers, dispatch unit 212 suspends instruction dis-
patch until the needed physical registers become available.

After the register management unit 214 has mapped the
current instruction, issue queue 222 issues the current instruc-
tion to general execution engine 224, which includes execu-
tion units (EUs) 2304-230x. Execution units 230a-230% are
of various types, such as floating-point (FP), fixed-point
(FX), and load/store (LS). General execution engine 224
exchanges data with data memory (e.g. RAM 114, ROM 116
of FIG. 1) via a data cache 234. Moreover, issue queue 222
may contain instructions of IP type. FX type, and LS instruc-
tions. However, it should be appreciated that any number and
types of instructions can be used. During execution, EUs
230a-2307 obtain the source operand values from physical
locations in register file 232a-232#n and store result data, if
any, in register files 232a-232r and/or data cache 234.

Still referring to FIG. 2, register management unit 214
includes: (i) mapper cluster 215, which includes architected
register mapper 216, unified main mapper 218, intermediate
register mapper 220, and (ii) issue queue 222. Mapper cluster
215 tracks the physical registers assigned to the logical reg-
isters of various instructions. In an exemplary embodiment,
architected register mapper 216 has 16 logical (i.e., not physi-
cally mapped) registers of each type that store the last, valid
(i.e., checkpointed) state of logical-to-physical register map-
per data. However, it should be recognized that different
processor architectures can have more or less logical regis-
ters, as described in the exemplary embodiment. Architected
register mapper 216 includes a pointer list that identifies a
physical register which describes the checkpointed state.
Physical register files 232a-232#n will typically contain more
registers than the number of entries in architected register
mapper 216. It should be noted that the particular number of
physical and logical registers that are used in a renaming
mapping scheme can vary.

10

15

20

25

30

35

40

45

50

55

60

14

In contrast, unified main mapper 218 is typically larger
(typically contains up to 20 entries) than architected register
mapper 216. Unified main mapper 218 facilitates tracking of
the transient state of logical-to-physical register mappings.
The term “transient” refers to the fact that unified main map-
per 218 keeps track of tentative logical-to-physical register
mapping data as the instructions are executed out-of-order.
000 execution typically occurs when there are older instruc-
tions which would take longer (i.e., make use of more clock
cycles) to execute than newer instructions in the pipeline.
However, should an OoO instruction’s executed result require
that it be flushed for a particular reason (e.g. a branch miss-
prediction), the processor can revert to the check-pointed
state maintained by architected register mapper 216 and
resume execution from the last, valid state.

Unified main mapper 218 makes the association between
physical registers in physical register files 232a-232» and
architected register mapper 216. The qualifying term “uni-
fied” refers to the fact that unified main mapper 218 obviates
the complexity of custom-designing a dedicated mapper for
each of register files 232 (e.g., general-purpose registers
(GPRs), floating-point registers (FPRs), fixed-point registers
(FXPs), exception registers (XERs), condition registers
(CRs), etc.).

In addition to creating a transient, logical-to-physical reg-
ister mapper entry of an OoO instruction, unified main map-
per 218 also keeps track of dependency data (i.e. instructions
that are dependent upon the finishing of an older instruction in
the pipeline), which is important for instruction ordering.
Conventionally, once unified main mapper 218 has entered an
instruction’s logical-to-physical register translation, the
instruction passes to issue queue 222. Issue queue 222 serves
as the gatekeeper before the instruction is issued to execution
unit 230 for execution. As a general rule, an instruction cannot
leave issue queue 222 if it depends upon an older instruction
to finish. For this reason, unified main mapper 218 tracks
dependency data by storing the issue queue position data for
each instruction thatis mapped. Once the instruction has been
executed by general execution engine 224, the instruction is
said to have “finished” and is retired from issue queue 222.

Register management unit 214 may receive multiple
instructions from dispatch unit 212 in a single cycle so as to
maintain a filled, single issue pipeline. The dispatching of
instructions is limited by the number of available entries in
unified main mapper 218. In conventional mapper systems,
which lack intermediate register mapper 220, if unified main
mapper 218 has a total of 20 mapper entries, there is a maxi-
mum of 20 instructions that can be in flight (i.e., not check-
pointed) at once. Thus, dispatch unit 212 of a conventional
mapper system can conceivably “dispatch” more instructions
than what can actually be retired from unified main mapper
218. The reason for this bottleneck at the unified main mapper
218 is due to the fact that, conventionally, an instruction’s
mapper entry could not retire from unified main mapper 218
until the instruction “completed” (i.e., all older instructions
have “finished” executing).

According to one embodiment, intermediate register map-
per 220 serves as a non-timing-critical register for which a
“finished”, but “incomplete” instruction from unified main
mapper 218 could retire to (i.e. removed from unified main
mapper 218) in advance of the instruction’s eventual comple-
tion. Once the instruction “completes”, completion unit 240
notifies intermediate register mapper 220 of the completion.
The mapper entry in intermediate register mapper 220 can
then update the architected coherent state of architected reg-
ister mapper 216 by replacing the corresponding entry that
was presently stored in architected register mapper 216.

US 9,311,095 B2

15

When dispatch unit 212 dispatches an instruction, register
management unit 214 evaluates the logical register number(s)
associated with the instruction against mappings in archi-
tected register mapper 216, unified main mapper 218, and
intermediate register mapper 220 to determine whether a
match (commonly referred to as a “hit”) is present in archi-
tected register mapper 216, unified main mapper 218, and/or
intermediate register mapper 220. This evaluation is referred
to as a logical register lookup. When the lookup is performed
simultaneously at more than one register mapper (i.e., archi-
tected register mapper 216, unified main mapper 218, and/or
intermediate register mapper 220), the lookup is referred to as
a parallel logical register lookup.

Each instruction that updates the value of a certain target
logical register is allocated a new physical register. Whenever
this new instance of the logical register is used as a source by
any other instruction, the same physical register must be used.
As there may exist a multitude of instances of one logical
register, there may also exist a multitude of physical registers
corresponding to the logical register. Register management
unit 214 performs the tasks of (i) analyzing which physical
register corresponds to a logical register used by a certain
instruction, (i) replacing the reference to the logical register
with a reference to the appropriate physical register (i.e. reg-
ister renaming), and (iii) allocating a new physical register
whenever a new instance of any logical register is created
(i.e., physical register allocation).

Initially, before any instructions are dispatched, the unified
main mapper 218 will not receive a hit/match since there are
no instructions currently in flight. In such an event, unified
main mapper 218 creates a mapping entry. As subsequent
instructions are dispatched, if a logical register match for the
same logical register number is found in both architected
register mapper 216 and unified main mapper 218, priority is
given to selecting the logical-to-physical register mapping of
unified main mapper 218 since the possibility exists that there
may be instructions currently executing OoO (i.e., the map-
ping is in a transient state).

After unified main mapper 218 finds a hit/match within its
mapper, the instruction passes to issue queue 222 to await
issuance for execution by one of execution units 230. After
general execution engine 224 executes and “finishes” the
instruction, but before the instruction “completes”, register
management unit 214 retires the mapping entry presently
found in unified main mapper 218 from unified main mapper
218 and moves the mapping entry to intermediate register
mapper 220. As a result, a slot in unified main mapper 218 is
made available for mapping a subsequently dispatched
instruction. Unlike unified main mapper 218, intermediate
register mapper 220 does not store dependency data. Thus,
the mapping that is transferred to intermediate register map-
per 220 does not depend (and does not track) the queue
positions of the instructions associated with its source map-
pings. This is because issue queue 222 retires the “finished,
but not completed” instruction is after a successful execution.
In contrast, under conventional rename mapping schemes
lacking an intermediate register mapper, a unified main map-
per continues to store the source rename entry until the
instruction completes. Under the present embodiment, inter-
mediate register mapper 220 can be positioned further away
from other critical path elements because, unified main map-
per 218, its operation is not timing critical.

Once unified main mapper 218 retires a mapping entry
from unified main mapper 218 and moves to intermediate
register mapper 220, mapper cluster 214 performs a parallel
logical register lookup on a subsequently dispatched instruc-
tion to determine if the subsequent instruction contains a

10

15

20

25

30

35

40

45

50

55

60

65

16

hit/match in any of architected register mapper 216, unified
main mapper 218, and intermediate register mapper 220. If a
hit/match to the same destination logical register number is
found in at least two of architected register mapper 216,
unified main mapper 218, and intermediate register mapper
220, multiplexer 223 in issue queue 222 awards priority by
selecting the logical-to-physical register mapping of unified
main mapper 218 over that of the intermediate register map-
per 220, which in turn, has selection priority over architected
register mapper 216.

The mechanism suggested by Barrick by which the selec-
tion priority is determined is discussed as follows. A high
level logical flowchart of an exemplary method of determin-
ing which mapping data values to use in executing an instruc-
tion, in accordance with one embodiment. In an embodiment,
a dispatch unit 212 dispatching one or more instructions to
register management unit 214. In response to the dispatching
of the instruction(s), register management unit 214 deter-
mines via a parallel logical register lookup whether a “hit” to
a logical register (in addition to a “hit” to architected register
mapper 216) associated with each dispatched instruction has
occurred. In this regard, it should be understood that archi-
tected register mapper 216 is assumed to always have hit/
match, since architected register mapper 216 stores the
checkpointed state of the logical-to-physical register mapper
data. If register management unit 214 does not detect a match/
hit in unified main mapper 218 and/or intermediate register
mapper 220, multiplexer 223 selects the logical-to-physical
register renaming data from architected register mapper 216.
If register management unit 214 detects a match/hit in unified
main mapper 218 and/or intermediate register mapper 220,
register management unit 214 determines in a decision block
whether a match/hit occurs in both unified main mapper 218
and intermediate register mapper 220. If a hit/match is deter-
mined in both mappers 218 and 220, a register management
unit 214 determines whether the mapping entry in unified
main mapper 218 is “younger” (i.e., the creation of the map-
ping entry is more recent) than the mapping entry in interme-
diate register mapper 220. If entry in unified main mapper 218
is younger than the entry in intermediate register mapper 220,
multiplexer 223 selects the logical-to-physical register
renaming data from unified main mapper 218. If the entry in
unified main mapper 218 is not younger than the entry in
intermediate register mapper 220, multiplexer 223 selects the
logical-to-physical register renaming data from intermediate
register mapper 220.

If a match/hit does not occur in both unified main mapper
218 and intermediate register mapper 220, it is determined
whether an exclusive hit/match to unified main mapper 218
occurs. If an exclusive hit to unified main mapper 218 occurs,
multiplexer 223 selects the logical-to-physical register
renaming data from unified main mapper 218. However, if a
hit/match does not occur at unified main mapper 218 (thus,
the hit/match exclusively occurs at intermediate register map-
per 220), multiplexer 223 selects the logical-to-physical reg-
ister renaming data from intermediate register mapper 220
(block 320). A general execution engine 224 uses the output
data of the logical register lookup for execution.

In an example embodiment a dispatch unit 212 dispatches
one or more instructions to register management unit 214. A
unified main mapper creates a new, logical-to-physical regis-
ter mapping entry. [ssue queue 222 maintains the issue queue
position data of the dispatched instruction, which utilizes the
mapping entry that is selected via the logical register lookup
(described in FIG. 3). General execution engine 224 detects
whether any of the instructions under execution has finished
(i.e., one of Us 130 has finished execution of an instruction).

US 9,311,095 B2

17

Ifthe issued instruction has not finished, the method waits for
an instruction to finish. In response to general execution
engine 224 detecting that an instruction is finished, unified
main mapper 218 moves the logical-to-physical register
renaming data from unified main mapper 218 to intermediate
register mapper 220. Unified main mapper 218 retires the
unified main mapping entry associated with the finished
instruction. A completion unit 240 determines whether the
finished instruction has completed. If the finished instruction
has not completed, completion unit 240 continues to wait
until it detects that general execution unit 224 has finished all
older instructions. However, if completion unit 240 detects
that the finished instruction has completed, intermediate reg-
ister mapper 220 updates the architected coherent state of
architected register mapper 216 and the intermediate register
mapper 220 retires its mapping entry.

U.S. Pat. No. 6,189,088 “Forwarding stored data fetched
for out-of-order load/read operation to over-taken operation
read-accessing same memory location” to Gschwind, filed
Feb. 13, 2001 and incorporated herein by reference describes
an example out-of-order (OoO) processor.

According to Gschwind, FIG. 3 is a functional block dia-
gram of a conventional computer processing system (e.g.,
including a superscalar processor) that supports dynamic
reordering of memory operations and hardware-based imple-
mentations of the interference test and data bypass sequence.
That is, the system of FIG. 3 includes the hardware resources
necessary to support reordering of instructions using the
mechanisms listed above, but does not include the hardware
resources necessary to support the execution of out-of-order
load operations before in-order load operations. The system
consists of: a memory subsystem 301; a data cache 302: an
instruction cache 304; and a processor unit 300. The proces-
sor unit 500 includes: an instruction queue 303; several
memory units (MUs) 305 for performing load and store
operations; several functional units (FUs) 307 for performing
integer, logic and floating-point operations; a branch unit
(BU) 309; a register file 311; a register map table 320; a
free-registers queue 322; a dispatch table 324; a retirement
queue 326; and an in-order map table 328.

In the processor depicted in FIG. 3, instructions are fetched
from instruction cache 304 (or from memory subsystem 301,
when the instructions are not in instruction cache 304) under
the control of branch unit 309, placed in instruction queue
303, and subsequently dispatched from instruction queue
303. The register names used by the instructions for specify-
ing operands are renamed according to the contents of register
map table 320, which specifies the current mapping from
architected register names to physical registers. The archi-
tected register names used by the instructions for specitying
the destinations for the results are assigned physical registers
extracted from free-registers queue 322, which contains the
names of physical registers not currently being used by the
processor. The register map table 320 is updated with the
assignments of physical registers to the architected destina-
tion register names specified by the instructions. Instructions
with all their registers renamed are placed in dispatch table
324. Instructions are also placed in retirement queue 326, in
program order, including their addresses, and their physical
and architected register names. Instructions are dispatched
from dispatch table 324 when all the resources to be used by
such instructions are available (physical registers have been
assigned the expected operands, and functional units are
free). The operands used by the instruction are read from
register file 311, which typically includes general-purpose
registers (GPRs), floating-point registers (FPRs), and condi-
tion registers (CRs). Instructions are executed, potentially

40

45

18

out-of-order, in a corresponding memory unit 305, functional
unit 307 or branch unit 309. Upon completion of execution,
the results from the instructions are placed in register file 311.
Instructions in dispatch table 324 waiting for the physical
registers set by the instructions completing execution are
notified. The retirement queue 326 is notified of the instruc-
tions completing execution, including whether they raised
any exceptions. Completed instructions are removed from
retirement queue 326, in program order (from the head of the
queue). At retirement time, if no exceptions were raised by an
instruction, then in-order map table 328 is updated so that
architected register names point to the physical registers in
register file 311 containing the results from the instruction
being retired: the previous register names from in-order map
table 328 are returned to free-registers queue 322.

On the other hand, if an instruction has raised an exception,
then program control is set to the address of the instruction
being retired from retirement queue 326. Moreover, retire-
ment queue 326 is cleared (flushed), thus canceling all unre-
tired instructions. Further, the register map table 320 is set to
the contents of in-order map table 328, and any register not in
in-order map table 328 is added to free-registers queue 322.

A conventional superscalar processor that supports reor-
dering of load instructions with respect to preceding load
instructions (as shown in FIG. 3) may be augmented with the
following:

1. A mechanism for marking load instructions which are
issued out-of-order with respect to preceding load
instructions;

2. A mechanism to number instructions as they are fetched,
and determine whether an instruction occurred earlier or
later in the instruction stream. An alternative mechanism
may be substituted to determine whether an instruction
occurred earlier or later with respect to another instruc-
tion;

3. A mechanism to store information about load operations
which have been executed out-of-order, including their
address in the program order, the address of their access,
and the datum value read for the largest guaranteed
atomic unit containing the loaded datum:

4. A mechanism for performing an interference test when a
load instruction is executed in-order with respect to one
or more out-of-order load instructions, and for perform-
ing priority encoding when multiple instructions inter-
fere with a load operation;

5. A mechanism for bypassing the datum associated with
an interfering load operation: and

6. A mechanism for deleting the record generated in step
(3) at the point where the out-of-order state is retired
from retirement queue 326 to register file 311 in program
order.

The mechanisms disclosed by Gschwind are used in con-
junction with the mechanisms available in the conventional
out-of-order processor depicted in FIG. 3, as follows. Each
instruction is numbered with an instruction number as it
enters instruction queue 303. A load instruction may be dis-
patched from dispatch table 324 earlier than a preceding load
instruction. Such a load instruction is denoted below as an
‘out-of-order’ load operation. In such a case, the entry in
retirement queue 326 corresponding to the load instruction is
marked as an out-of-order load.

The detection of the dispatching of an out-of-order load
operation from dispatch table 324 to a memory unit 305 for
execution is preferably accomplished with two counters, a
“loads-fetched counter” and a “loads-dispatched counter”.
The loads-fetched counter is incremented when a load opera-
tion is added to dispatch table 324. The loads-dispatched

US 9,311,095 B2

19

counter is incremented when a load operation is sent to a
memory unit 305 for execution. The current contents of the
loads-fetched counter is attached to a load instruction when
the load instruction is added to dispatch table 324. When the
load instruction is dispatched from dispatch table 324 to a
memory unit 305 for execution, if the value attached to the
load instruction in dispatch table 324 is different from the
contents of the loads-dispatched counter at that time, then the
load instruction is identified as an out-of-order load opera-
tion. Note that the difference among the two counter values
corresponds to the exact number of load operations with
respect to which load instruction is being issued out-of-order.
Out-of-order load instructions are only dispatched to a
memory unit 305 if space for adding entries in load-order
table is available.

The load-order table is a single table which is accessed by
all memory units 305 simultaneously (i.e., only a single logi-
cal copy is maintained, although multiple physical copies
may be maintained to speed up processing). Note that if
multiple physical copies are used, then the logical contents of
the multiple copies must always reflect the same state to all
memory units 305.

The instruction number of the instruction being executed
and the fact of whether an instruction is executed specula-
tively is communicated to memory unit 305 for each load
operation issued.

An instruction set architecture (ISA), implemented by a
processor, typically defines a fixed number of architected
general purpose registers that are accessible, based on register
fields of instructions of the ISA. In out-of-order execution
processors, rename registers are assigned to hold register
results of speculatively executed of instructions. The value of
the rename register is committed as an architected register
value, when the corresponding speculative instruction execu-
tion is “committed” or “completed. Thus, at any one point in
time, and as observed by a program executing on the proces-
sor, in a register rename embodiment, there exist many more
rename registers than architected registers.

In one embodiment of rename registers, separate registers
are assigned to architected registers and rename registers. In
another, embodiment, rename registers and architected reg-
isters are merged registers. The merged registers include a tag
for indicating the state of the merged register, wherein in one
state, the merged register is a rename register and in another
state, the merged register is an architected register.

In a merged register embodiment, as part of the initializa-
tion (for example, during a context switch, or when initializ-
ing a partition), the first n physical registers are assigned as
the architectural registers, where n is the number of the reg-
isters declared by the instruction set architecture (ISA). These
registers are set to be in the architectural register (AR) state;
the remaining physical registers take on the available state.
When an issued instruction includes a destination register, a
new rename buffer is needed. For this reason, one physical
register is selected from the pool of the available registers and
allocated to the destination register. Accordingly, the selected
register state is set to the rename buffer not-valid state (NV),
and its valid bit is reset. After the associated instruction fin-
ishes execution, the produced result is written into the
selected register, its valid bit is set, and its state changes to
rename buffer (RB), valid. Later, when the associated instruc-
tion completes, the allocated rename buffer will be declared
to be the architectural register that implements the destination
register specified in the just completed instruction. Its state
then changes to the architectural register state (AR) to reflect
this.

20

40

45

20

While registers are almost a universal solution to perfor-
mance, they do have a drawback. Different parts of a com-
puter program all use their own temporary values, and there-
fore compete for the use of the registers. Since a good
understanding of the nature of program flow at runtime is very
difficult, there is no easy way for the developer to know in
advance how many registers they should use, and how many
to leave aside for other parts of the program. In general these
sorts of considerations are ignored, and the developers, and
more likely, the compilers they use, attempt to use all the
registers visible to them. In the case of processors with very
few registers to begin with, this is also the only reasonable
course of action.

Register windows aim to solve this issue. Since every part
of a program wants registers for its own use, several sets of
registers are provided for the different parts of the program. If
these registers were visible, there would be more registers to
compete over, i.e. they have to be made invisible.

Rendering the registers invisible can be implemented effi-
ciently; the CPU recognizes the movement from one part of
the program to another during a procedure call. It is accom-
plished by one of a small number of instructions (prologue)
and ends with one of a similarly small set (epilogue). In the
Berkeley design, these calls would cause a new set of registers
to be “swapped in” at that point, or marked as “dead” (or
“reusable”) when the call ends.

Processors such as PowerPC save state to predefined and
reserved machine registers. When an exception happens
while the processor is already using the contents of the current
window to process another exception, the processor will gen-
erate a double fault in this very situation.

In an example RISC embodiment, only eight registers out
of a total of 64 are visible to the programs. The complete set
of registers are known as the register file, and any particular
set of eight as a window. The file allows up to eight procedure
calls to have their own register sets. As long as the program
does not call down chains longer than eight calls deep, the
registers never have to be spilled. i.e. saved out to main
memory or cache which is a slow process compared to reg-
ister access. For many programs a chain of six is as deep as the
program will go.

By comparison, another architecture provides simulta-
neous visibility into four sets of eight registers each. Three
sets of eight registers each are “windowed”. Eight registers
(10 through 17) form the input registers to the current proce-
dure level. Eight registers (L0 through [.7) are local to the
current procedure level, and eight registers (o0 through 07)
are the outputs from the current procedure level to the next
level called. When a procedure is called, the register window
shifts by sixteen registers, hiding the old input registers and
old local registers and making the old output registers the new
input registers. The common registers (old output registers
and new input registers) are used for parameter passing.
Finally, eight registers (g0 through g7) are globally visible to
all procedure levels.

An improved the design allocates the windows to be of
variable size, which helps utilization in the common case
where fewer than eight registers are needed for a call. It also
separated the registers into a global set of 64, and an addi-
tional 128 for the windows.

Register windows also provide an easy upgrade path. Since
the additional registers are invisible to the programs, addi-
tional windows can be added at any time. For instance, the use
of object-oriented programming often results in a greater
number of “smaller” calls, which can be accommodated by
increasing the windows from eight to sixteen for instance.

US 9,311,095 B2

21

The end result is fewer slow register window spill and fill
operations because the register windows overflow less often.

Instruction set architecture (ISA) processor out-of-order
instruction implementations may execute architected instruc-
tions directly or by use of firmware invoked by a hardware
instruction decode unit. However, many processors “crack”
architected instructions into micro-ops directed to hardware
units within the processor. Furthermore, a complex instruc-
tion set computer (CISC) architecture processor, may trans-
late CISC instructions into reduced instruction set computer
(RISC) architecture instructions. In order to teach aspects of
the invention, ISA machine instructions are described, and
internal operations (iops) may be deployed internally as the
ISA machine instruction, or as smaller units (micro-ops), or
microcode or by any means well known in the art, and will
still be referred to herein as machine instructions. Machine
instructions of an ISA have a format and function as defined
by the ISA, once the ISA machine instruction is fetched and
decoded, it may be transformed into iops for use within the
processor.

A computer processor may comprise an instruction fetch-
ing unit for obtaining instructions from main storage, a
decode unit for decoding instructions, an issue queue for
queuing instructions to be executed, execution units for
executing function of instructions and a dispatch unit for
dispatching instructions to respective execution units prefer-
ably in a pipeline. In embodiments, an issue queue, a decode
unit or a dispatch unit, for example, alone or in combination,
may modify an instruction such that it does not have to be
executed after a previous instruction.

In an embodiment, the processor determines that there is a
first instruction and a second instruction, wherein the second
instruction is configured to use the results of execution of the
first instruction in executing the second instruction. A test of
the two instructions determines that they can be modified in
order to produce instructions that can be executed more effi-
ciently. In an example, the modification enables the two
instructions to be executed out-of-order (the second instruc-
tion (second in program order) is not dependent on results of
the first instruction (first in program order)).

In an example embodiment, an architected instruction set
provides immediate instructions, (immediate instructions
have an immediate field sometimes referred to as a displace-
ment field or a constant field, the immediate field providing an
immediate value). The immediate instruction may also
include a register field, wherein an operand is a register value
of a register identified by the register field or wherein an
operand is a memory value of a memory location determined
by the register value. The immediate instruction further has an
opcode field having a value determining an operation to be
performed (such as an ADD, SUBTRACT. AND, OR, Load.
Store for example). Execution of the immediate instruction
performs the operation using the operand value and the imme-
diate value and may store the result in an immediate instruc-
tion specified result register (or main storage).

In an example architecture, the instruction set includes
immediate instruction, wherein operation is performed on
only a portion of the operand. Thus, an immediate value may
be added to a low order portion of the operand for example.
The instruction set may provide a 16 bit immediate field and
a 32 bit register, in which case a constant to be loaded into a
32 bit register would require two immediate instructions. In
an example sequence of instructions, a first immediate
instruction is used to load the low order portion and a second
immediate instruction is used to load the high order portion.
In another instruction set, immediate fields may be 8 bits and
registers 32 bits, in which case 4 immediate instructions

20

25

30

40

45

55

22

would be needed to load a constant into the register. In some
environments, only a portion of the operand may be needed,
such as in creating a table address, only the low order portion
is provided by an instruction in a sequence of instructions
(each sequence of instructions identifying a table entry by
using an immediate value to a low order portion of the regis-
ter, but not effecting the high order portion that locates the
table). In that case, only two 8 bit immediate instructions are
needed for loading the low order 16 bits of the 32 bit register.

In an example embodiment, two immediate instructions
are included in a program, a first immediate instruction is
followed in program order by a second immediate instruction.
Each instruction includes a 16 bit immediate (or displace-
ment) field (disp) and a target register (RT). The function of
the first immediate instruction is to load the value of the first
disp field into the low order portion of the first RT. The
function of the second immediate instruction is to load the
value of the second disp field into the high order portion of the
second RT. The processor executing the two instructions
determines that the two instructions can be combined, for
example in an issue queue of the processor, because the
processor has the ability to detect the two instructions and
combine the disp fields by concatenating the first disp and the
second disp into an internal data value that fits in the pipeline,
the first instruction is discarded and a modified second
instruction is created having the concatenated value as a disp
field. In an embodiment, the internal data value that is sup-
ported is narrow so only a portion of the second disp value can
be combined, in which case the processor detects only the
occurrence of second disp values that are small enough. The
immediate instructions having the form:

RT<disp
where

first instruction: RT<—disp(low)

second instruction: RT<—disp(high)

modified second instruction: RT<—disp(high)//disp(low)

In another embodiment, the first and second instructions
further comprise a second register field (RA field) for identi-
fying an operand register (RA).

instruction form RT<-RA, disp

A function is performed by each instruction using the oper-
and register RA and the disp field. An occurrence of the two
instructions is detected where each instruction is performing
the same operation but only on a portion of RA and RT. For
example, a Logical AND instruction ANDS the RA value to
the disp value:

first instruction: r2<—r3, disp(high) [ands disp to the high
portion of the value o the r3 register and puts the result in the
high portion of the r2 register]

second instruction: r2<—r3, disp(low) [ands disp to the low
portion of the value of the r3 register and puts the result in the
low portion of the R2 register]

modified second instruction: r2<—r3, disp(high)//disp(low)
[ands disp(high) concatenated with disp(low) to the value of
the r3 register and puts the result in the r2 register|

In a variation an arithmetic operation is performed in two
instructions in which case the two instructions must be
executed in program order since the result of the first instruc-
tion is needed in order to execute the second instruction. In
this example, an r2 and an r4 result must be stored in the
registers. In this case the second instruction is modified in
order to create an internal pair of instructions that can be
executed out-of-order.

first instruction: r2<—r3, disp(high) [adds an 8 bit disp
concatenated with 8 low order 0’s to the value of the 16 bitr3
register and puts the result in the 16 bit 12 register|

US 9,311,095 B2

23

second instruction: r4<—r2, disp(low) [adds a sign extended
8 bit disp (16 bits) to the 16 bit r2 register and puts the result
in the 16 bit r4 register]

modified second instruction: r4<—r3, disp(high)//disp(low)
[adds disp(high) concatenated with disp(low) to the value of
the r3 register and puts the result in the r4 register|

In an embodiment, a first instruction sequence consisting
of at least a first instruction “i0” and a second instruction “11”,
and a sequence of multiple internal instructions (internal ops
(iops)) that are improvements of the instruction sequence. For
example, a producer instruction followed by a consumer
instruction in program order (requiring in-order execution)
might be optimized to create iop0 corresponding to the pro-
ducer instruction and iopl corresponding to the consumer
instruction, where iop0 and iopl can be executed out-of-
order.

Referring now to FIG. 4A, an exemplary embodiment is
shown. A first decoder 0 402 receives from an instruction
cache (I-Cache) 401, a first instruction 0 (I0), and a second
decoder 1 403 receives a second instruction I1. The decoders
402 403 perform initial decoding 405 407, and provide infor-
mation 411 412 413 416 about the decoded plurality of
instructions (represented by at least an instruction 10 and an
instruction I1) to an Optimization analysis engine (OAE) 409.
Instruction decode logic in decoders 0 405 and 1 407 also
generates an initial decoded iop representation for the first
and second instruction corresponding to a first iop (iop0) 414
and second iop (iopl) 415 when no optimization takes place.

In an embodiment, the OAE 409 compares the decoded
characteristics of the instructions in example decoders 0 402
and 1 403 to determine whether they correspond to one of a
plurality of compound sequences that are candidates for opti-
mization. In accordance with one embodiment, the OAE 409
is also responsive to a plurality of control signals, to suppress
the recognition of compound sequences, e.g., when a con-
figuration bit is set. Configuration bits can correspond to
implementation specific registers to disable all or a subset of
compound instructions to disable decode time instruction
optimization (DTIO) when a design error has been detected,
when a determination has been made that performing a DTIO
sequence is no longer advantageous, when a processor enters
single-instruction (tracing) mode, and so forth. The OAE 409
can be a single entity as shown in FIG. 4A, or can be repli-
cated, distributed, split or otherwise integrated in one or more
of decoders 0 402 and 1 403, and the OAE 409 can be com-
bined in a single large compound decoder, e.g. including but
not limited to a complex decoder comprising the OAE 409,
decoder(402 and decoder1 403 in a single structure, to facili-
tate logic optimization and circuit design improvements.

The OAE provides information indicating whether a com-
pound sequence which can be optimized has been detected, as
well as information about the nature of the sequence (i.e.,
which of a plurality of instruction, and specific properties of
the sequence required by the decoder optimization logic to
generate an optimized sequence. OAE also provides steering
logic to a selector to select one of an unoptimized iop gener-
ated by the initial decode operation, or an iop corresponding
to an iop in an optimized DTIO sequence which has been
generated by “optimization logic” under control of the OAE
control signals, and additional information received from
decoders having decoded a portion of a compound sequence
being optimized, such as register specifiers, immediate fields
and operation codes for example.

OAE 409 may provide selection information 418 to selec-
tion logic 419 410 for determining if the respective instruc-
tions 10 or I1 should generate respective iop0 414 and iopl
415, or if an optimized instruction should be used.

10

15

20

25

30

35

40

45

50

55

60

65

24

An embodiment of an OAE 409 process is demonstrated in
the following example Psuedo-code:

IF (decoder0_addis && decoderl_additive_immed &&
decoder0_target == decoderl _rsl &&
decoderl_displacement OK &&
decoder0_rt == decoderl _rt) THEN

decoder0_subsume <= TRUE;
decoderl_concat_immed <= TRUE;

ELSIF (decoder0_addis && decoderl_additive_immed &&
decoder0_target == decoderl _rsl &&
decoderl_displacement OK &&
decoder0_rt /= decoder]_rt) THEN

decoder0_subsume <= FALSE;
decoderl_concat_immed <= TRUE;

ELSIF (decoder0_li && decoder]_addis &&
decoder0_target == decoderl _rsl &&
decoderl_displacement OK &&
decoder0_rt == decoderl _rt) THEN

decoder0_subsume <= TRUE;
decoderl_concat_immed <= TRUE;

ELSIF (decoder0_li && decoder]_addis &&
decoder0_target == decoderl _rsl &&
decoderl_displacement OK &&
decoder0_rt /= decoder]_rt) THEN

decoder0_subsume <= FALSE;
decoderl_concat_immed <= TRUE;

ELSIF (decoder0_andis && decoderl_and &&
decoder0_target == decoderl _rsl &&
decoderl_displacement OK &&
decoder0_rt == decoderl _rt) THEN

decoder0_subsume <= TRUE;
decoderl_concat_immed <= TRUE;

ELSIF

In an example embodiment based on PowerPC architec-
ture, the following two instructions are candidates for opti-
mization:

first immediate instruction ADDIS r9 = r2, high_field (disp)

second immediate instruction ADDI r3 = 19, low-field(disp)

Where the first and second immediate instructions have the
generic form:

ADDIS (RT)<—(RA)+(SIMM//0x0000)

ADDII (RT)«—(RA)+(sign extended SIMM)
wherein, the first instruction comprises a first immediate field
(disp), a first register field (r2) and a first result register field
(r9) and the first instruction is configured to perform an opera-
tion (ADDIS) using a value of the first immediate field and the
high order portion of a register identified by the first register
field and store the result in the first result register specified by
the first result register field. The second instruction comprises
a second immediate field (disp), a second register field (r9)
and a second result register field (r3) and the second instruc-
tion is configured to perform an operation using a value of the
second immediate field and the low order portion of a register
identified by the first register field and store the result in the
second result register specified by the second result register
field. An example, an ADDIS instruction is the first instruc-
tion and an ADDI instruction is the second instruction. (These
two instructions are used as examples to teach aspects of the
invention but the invention is not limited to these instruc-
tions). Of course, there may be other intervening instructions
between the firstimmediate instruction and the second imme-
diate instruction in some environments.

ADDIS concatenates a 16 bit immediate field value as a
high order 16 bits to 16 low order 0’s and arithmetically adds
the concatenated sign extended 32 bit value to an operand
located at an instruction specified RA register address. The

US 9,311,095 B2

25
result is stored in an instruction specified RT result register
(19). (it should be noted, in the PowerPC ISA, if the RA field
specifies register 0.32 or 64 0’s are added to the concatenated
32 bit value).

ADDI concatenates sign-extends a 16 bit immediate field
value and arithmetically adds the sign-extended value to an
operand located at an instruction specified RA register
address. The result is stored in an instruction specified RT
result register (r9). (it should be noted, in the PowerPC ISA,
ifthe RA field specifies register 0, 32 or 64 0’s are added to the
concatenated 32 bit value).

The Load Immediate (LI) instruction (the PowerPC li
instruction is a form of'the addi instruction where A=0) stores
a sign extended low order 16 bit immediate value in a target
register (rD).

addi addi
Add Immediate (x'3800 0000")
addi 1DrA,SIMM

14 D A SIMM
0 56 10 11 15 16 31
ifrA =0

then 1D < EXTS (SIMM)
else 1D < (rA) + EXTS (SIMM)

The sum (rA[0) + sign extended SIMM is placed into rD.

The addi instruction is preferred for addition because it sets few
status bits.

NOTE: addi uses the value 0, not the contents of GPRO, if rA = 0.

Other Registers Altered:
None
Simplified Mnemonics:

1L 1D, value equivalent to addi 1D,0,value
la 1D,disp(rA) equivalent to addi 1D,rA,disp
subi 1D,rA,value equivalent to addi 1D,rA,-value
Add Immediate Shifted D-form
addis RT,RA,SI
15 SI

RT RA
11

0 16 31

if RA = 0 then RT < EXTS (SI | |'60)

else RT < (RA) + EXTS (SI|| 150)

The sum (RAI0)+(SI||0x0000) is placed into register RT.

Special Registers Altered:

None

Extended Mnemonics:

Examples of extended mnemonics for Add Immediate
Shifted:

Extended: Equivalent to:
lis Rx,value addis Rx,0,value
subis Rx,Ry,value addis Rx,Ry,-value

5

10

15

20

25

30

35

45

50

60

26

The second instruction can be modified to include the first
immediate field and the second immediate field (by concat-
enating all or part of the first immediate field with the second
immediate field) and specify the second register specified by
the r2 field (rather than the first register specified by the r9
field) so the resulting modified second instruction can be
executed out-of-order with respect to the execution of the first
instruction:

first immediate instruction: ADDIS r9=r2, high_field
(disp)

modified second immediate instruction: ADI r3=r2,
high_field//low-field(disp)

In an embodiment wherein only a portion of the immediate
fields can be concatenated due to pipeline restrictions, a
detector circuit determines that the first immediate field has a
predetermined number of high order ‘0’s and concatenates
only a portion of the first immediate field with the second
immediate field to form the modified instruction. If the first
instruction has less high order “0’s it is executed in order
without modification. In an alternate embodiment, a detector
circuit can detect that the first immediate field has a predeter-
mined number of high order ‘0’s or ‘1°s and concatenates only
a portion of the first immediate field with the second imme-
diate field to form the modified instruction.

In another example embodiment,

ADDIS 19=r2, low_field (disp)

ADDI r3=r9, high-field(disp)
the first instruction comprises a first immediate field (low-
field (disp)) and the second instruction comprises a second
immediate field (high-field (disp)) in which case, the second
instruction may be modified similarly to the previous
example by replacing the second register field with the first
register field and, in concatenating all or a portion of the first
immediate field (a low-field(disp) as a low order value with
the second immediate field (a high-field(disp)) as ahigh order
value.

first immediate instruction: ADDIS r9=r2, low_field (disp)

modified second immediate instruction

(ADDI—=ADDIM): ADDIM r3=r2, high_field (disp)//
low-field (disp)

In an embodiment, a processor and a compiler cooperate to
facilitate the function. The compiler developers identify com-
binations of first and second immediate instructions for com-
piled programs that would be suited for aspects of the inven-
tion. The processor is designed specifically to detect an
occurrence of the first and second immediate instructions in
an instruction stream and to modify the second immediate
instructions according to a predefined criteria. The compiler,
compiles code using instructions that will trigger the modi-
fied second immediate instructions accordingly.

In the previous example, the predefined criteria may be an
ADDIS instruction (ADDIS opcode) followed by a ADDI
instruction (ADDI opcode) wherein the RT (result register)
field of the ADDIS is the same as the RA field of the ADDD
instruction. In another embodiment, the order could be gen-
eralized wherein the preferred criteria is an ADDIS instruc-
tion (ADDIS opcode) in combination with a ADDI instruc-
tion (ADDI opcode, and including the special case of LI
operation of the ADDI wherein RA=0) wherein the RT (result
register) field of the first is the same as the RA field of the
second instruction.

In an embodiment, the engine is configured to detect a
plurality of patterns, and generate control signals. Example
Analysis optimization engine Pseudo-code are as follows:

US 9,311,095 B2

27

IF (decoder0_addis && decoderl_additive_immed && /#15¢ Clause™/
decoder0_target == decoderl_rsl &&
decoderl_displacement_OK &&
decoder0_rt == decoderl_rt)

THEN:
decoder0_subsume <= TRUE;
decoderl_concat_immed <= TRUE;

ELSE;

IF (decoder0_addis && decoderl_additive_immed &&
decoder0_target == decoderl_rsl &&
decoderl_displacement_OK &&
decoder0_rt /= decoderl_rt)

THEN
decoder0_subsume <= FALSE;
decoderl_concat_immed <= TRUE;

ELSE;

IF (decoder0_li && decoder] _addis &&
decoder0_target == decoderl_rsl &&
decoderl_ displacement OK &&
decoder0_rt == decoderl_rt)

THEN
decoder0_subsume <= TRUE;
decoderl_concat_immed <= TRUE;

ELSE;

IF (decoder0_li && decoder] _addis &&
decoder0_target == decoderl_rsl &&
decoderl_displacement_OK &&
decoder0_rt /= decoderl_rt)

THEN
decoder0_subsume <= FALSE;
decoderl_concat_immed <= TRUE;

ELSE

IF (decoder0_andis && decoderl_and &&
decoder0_target == decoderl_rsl &&
decoderl_displacement_OK &&
decoder0_rt == decoderl_rt)

THEN
decoder0_subsume <= TRUE;
decoderl _concat_immed <= TRUE;

/*2nd Clause*/

/*3rd Clause*/

/*4th Clause™/

/*5th Clause*/

The example function is as follows.

1st IF CLAUSE

x1 “addis rD1, rAl, SIMM(1)”

x2 “addi rD2, rA2, SIMM(2)”

any addis (x1) followed by certain additive instructions

targeting a GPR (x2) (such as D-Form PowerPC instructions),
wherein the target register of the addis is the same as a base
register of the source (rD1 is the same register as rA2), that is
not a store (i.e., addi instructions and loads, and where the
displacement value in decoder() meets a criterion expressed as
displacement_OK (e.g., a limit the number of bits) will gen-
erate control signals to indicate that a DTIO optimization has
been detected (select_DTIO), a signal preferably connected
to selection logic of FIG. 4A that will:

a) indicate the specific compound sequence (DTICO_SE-
Q_no) which will be used by optimization logic to gen-
erate modified signals

b) generate a control signal indicating whether the iop in
decoder0 should be emitted or replaced by a NOP
(decoder0_subsume) and whether decoderl should
combine the displacement from decoder0 with its own
displacement. (In an embodiment, the 1% clause checks
for rD1 and rD2 specitying the same register, in which
case the first instruction (x1) is discarded or replaced by
a no-op.

2nd IF Clause

x1 “addis rD1, rAl, SIMM(1)”

x2 “addi rD2, rA2, SIMM(2)”

any addis (x1) followed by an additive certain instruction

targeting a GPR (such as D-Form PowerPC instructions) (x2),
wherein the target register of the addis is the same as the base
register of the source (rD1 is the same register as rA2), and
where the displacement value (SIMM(1)//0x0000) in

10

15

20

25

30

35

40

45

50

55

60

65

28

decoder0 meets a criterion expressed as displacement_OK
(e.g., a limit on the number of bits supported by iops of the
processor)

This will generate control signals to:

a) indicate that a DTIO optimization has been detected
(select_DTIO), a signal preferably connected to selection
logic of FIG. 4A;

b) indicate the specific compound sequence (DTIO_SE-
Q_no) which will be used by optimization logic to generate
modified signals

¢) generate a control signal indicating whether the iop in
decoder0 should be emitted or replaced by a NOP (no-ope)
(decoder0_subsume) and

d) indicate whether decoder1 should combine the displace-
ment (SIMM) from decoder0 with its own displacement
(SIMM)

3rd IF Clause

x1 “addi rD1, rA1, SIMM(1)”

x2 “addis rD2, rA2, SIMM(2)”

any load immediate (which is really an addi to register 0)
followed by an addis, where the displacement (immediate
value (SIMM(1)//0x0000)) on addis in decoder 1 meets the
displacement criterion for merging displacements, where the
target of the load immediate (rD1) is the same register as the
target (rD2) and source (rA2) of the addis

This will generate control signals to:

a) indicate that a DTIO optimization has been detected
(select_DTIO), a signal preferably connected to selection
logic of FIG. 4A;

b) indicate the specific compound sequence (DTIO_SE-
Q_no) which will be used by optimization logic to generate
modified signals

¢) generate a control signal indicating whether the iop in
decoderl should be emitted or replaced by a NOP
(decoderl_subsume) and whether decoder0 should combine
the displacement from decoderl with its own displacement

4th IF Clause

x1 “addi rD1, rA1, SIMM(1)”

x2 “addis rD2, rA2, SIMM(2)”

any load immediate (x1) (which is really an addi to register
0) followed by an addis, where the displacement (immediate
value (SIMM//0x0000)) on addis in decoder 1 meets the
displacement criterion for merging displacements, where the
target of the load immediate is NOT the same register as the
target of the addis (rD2 not the same register as rD1), but is the
same as the source of addis (rD2 is the same register as rA2)

This will generate control signals to:

a) indicate that a DTIO optimization has been detected
(select_D TO), a signal preferably connected to selection
logic of FIG. 4A;

b) indicate the specific compound sequence (DTIO_SE-
Q_no) which will be used by optimization logic to generate
modified signals

¢) generate a control signal indicating whether the iop in
decoder0 or decoder1 should be emitted or replaced by a NOP
(decoder0_subsume, decoderl_subsume)

and

d) indicate whether decoder0 should combine the displace-
ment from decoder] with its own displacement by prepending
its own displacement to decoder0’s displacement
(decoderl_mmed_merged0d1)

5th IF Clause:

detects a combination of an andis (“addis rDa, rAa, SIMM
(a)”) and an andi (“addi rDb, rAb, SIMM(b)”) instruction,
where the target of andis (rDa) is the same as the source and
target of andi (rDb rAb).

US 9,311,095 B2

29

While PowerPC instructions is used to demonstrate aspects
of the invention, the invention could be advantageously prac-
ticed by other PowerPC instructions as well as any ISA,
including, but not limited to Intel® x86 ISA for example.

It should be noted that in the PowerPC examples above,
concatenation of two SIMM immediate values in PowerPC
iop can be performed when the low-order SIMM is positive
(high order bit=-0). However, for the case where the low-
order SIMM is negative (sign extended), an effective ADD
operation of the sign bits with the high order value is needed.
This can be done at any stage in the pipeline, as long as the
pipeline understands that a bit of the concatenated value
should be treated as a sign bit which must be effectively
propagated and added to a high order portion of an immediate
constant. In an embodiment, only positive values are opti-
mized. In another embodiment, the concatenation is per-
formed and the pipeline is informed that the concatenated
value includes an embedded sign bit, for example by provid-
ing a tag to the instruction that is passed in the pipeline. In an
embodiment, the concatenated value is manipulated by the
execution unit to effectively handle the sign bit which
manipulation effectively subtracts a 1 (adds all 0’s) to the high
order portion of the concatenated value. In an embodiment, an
arithmetic operation is performed on the high-order bits
based on the sign bit in the decode unit to produce a corrected
value in the optimized iop. In an embodiment, the decode unit
creates an iop immediate field representing the combined low
order value and high order value.

Although an ADD operation has been used to teach aspects
of the invention, one skilled in the art will appreciate that the
invention can be practiced with a variety of instructions hav-
ing other than ADD operations, including logical operations
(AND, OR, XOR for example) or other arithmetic operations
and the like.

Accordingly, PowerPC offers other immediate instructions
that would similarly lend themselves to be optimized using
aspects of the invention. Fore example, the “OR Immediate”
(ORI) and “OR Immediate Shifted” (ORIS) instructions as
follows

OR Immediate D-form

ori RA,RS,UI

24
0

Ul
16 31

RS RA
11

6

RA < RS)| (0| UD

The contents of register RS are ORed with **0||UI and the
result is placed into register RA.

The preferred “no-op” (an instruction that does nothing) is:

ori 0,0,0

Special Registers Altered:

None

OR Immediate Shifted D-form
oris RA,RS,UI
25 Ul

0 16 31

RS RA
11

RA < RS)| (20| | UT|| 60

10

15

20

25

30

35

40

45

50

55

60

65

30

The contents of register RS are ORed with *20|[UT||*°0 and
the result is placed into register RA.

Special Registers Altered:

None
oris RA<—(RS)I(0x00000000/U1//0x0000)

Performs a logical OR “I” operation of the immediate field
(UI) with the high order 16 bits of the low order 32 bits of the
64 bit RS operand.
and

ori RA<—(RS)I(0x000000000000//UI)

performs a logical OR operation of the immediate field
(UI) with the low order 16 bits of the 64 bit RS operand.

In an embodiment (with reference to the z/Architecture
ISA), dependent instructions having register dependencies
can be made independent. For example, 2 sequential instruc-
tions wherein the first instruction in program order stores to a
target register (RT) and a next instruction uses the same
register as a source register (RS). Thus, the instruction
sequence

AGRK r5<-r3 ADD r4

AGRK r6<—r5 ADD r2
can be implemented by modifying the second instruction as
shown:

AGRK r5<-r3 ADD r4

LAM r6<—r2 ADD r3 ADD r4 iop
where the LAM instruction is an iop instruction that adds
content of 3 registers RA, RB and RC and stores the result in
a register RT.

AGRK RiRoRs [RRF-a]
'BOES' | R; | R, | R2|
0 16 20 24 28 31

For ADD (A, AG, AGF, AGFR, AGR, AR, and AY) and for
ADD IMMEDIATE (AFI, AGF1, AGSI, and ASI), the second
operand is added to the first operand, and the sum is placed at
the first-operand location. For app (aGRk and ark) and for app
IMMEDIATE (AGHTK and AHIK), the second operand is added to the
third operand, and the sum is placed at the first operand
location.

Also, in another embodiment

AGRK r5<-r3 ADD r4

AGHIK r6<r5 ADD displacement
can be implemented by modifying the second instruction as
shown

AGRK r5<-r3 ADD r4

LA r6<disp ADD r3 ADD r4
where the LA instruction is an IOP instruction that adds 2
registers and a displacement value.

AGHIK RiRsL [RIE-d]

DY’

| EC’ |Rl | R3| L
8 12 47

16

For ADD IMMEDIATE (AGHIK and AHIK), the second
operand (immediate field 12) is added to the third operand
(R3), and the sum is placed at the first operand (R1) location.
For ADD IMMEDIATE (AGHIK), the first and third oper-
ands are treated as 64-bit signed binary integers, and the
second operand is treated as a 16-bit signed binary integer.

Those skilled in the art will appreciate that while the exem-
plary embodiments have been directed towards the detection

US 9,311,095 B2

31

of two-instruction sequences, and OAE may be connected to
more than two decoders, and identity DTIO sequences con-
sisting of more than 2 instructions. Furthermore the DTIO
sequence of instructions may be separated by additional
instructions in an embodiment.
Instructions in an instruction set architecture (ISA) are
typically defined in a modular fashion, with basic function
blocks represented by an individual instruction. In certain
cases, specific instruction sequences can be optimized to
execute more efficiently with an alternate sequence of
instructions that may not be available to the ISA. Also, ISAs
ability to add new instructions are limited by the available
opcode space. This is particularly severe for RISC architec-
tures with fixed width instruction sets, such as SPARC. ARM
or PowerPC. In many instances, modern microarchitectures
can integrate more function than defined in either RISC or
CISC instructions. Frequently, instructions computing a
value can be combined with a successor instruction, consum-
ing that value into a single more complex instruction (fusion).
However, since the executing processor has no way of know-
ing whether a result is an intermediate result or whether it will
beused again, the first instruction computing the intermediate
result must usually be retained in order to preserve architec-
tural equivalence.
In an embodiment, an instruction set is proposed that con-
tains “last-use” information indicating when a value is used
for the last time. In the past, when a processor (for example
instruction decode logic) recognizes a sequence has been
fetched for execution that is capable of being optimized, any
store operations performed by the sequence must be done in
the optimized version to comply with the architected function
of'the sequence of instructions. Thus, a compound-iop (inter-
nal operation or internal instruction) can be generated to
perform the combined operation of two or more instructions,
that typically have a produce-consumer relationship via a
register written by at least a first instruction and read at least
by a second instruction. Even when the processor instruction
optimizer generates a compound-iop performing the com-
bined function of both operations, the processor instruction
optimizer must generate an i0p to compute the output of the
first instruction and store it in the architected register that
joins producer/consumer of the optimized instruction
sequence, in case any future use of the value occurs. In many
cases the value in the producer/consumer relationship is used
only once, and then is not further references. Aspects of the
present invention, exploit indications that the register in the
producer/consumer dependence has a last-use in the con-
sumer of the optimized sequence without storing the interme-
diate value.
In an embodiment, a microprocessor equipped to decode
candidate instructions containing last-use information con-
tains instruction optimization logic, the instruction optimiza-
tion logic is preferably configured to:
detect instruction sequences that can be optimized;
detect that one or more results of the detected sequence to
be stored in an architected resource are indicated to have
alast-use within the optimized instruction sequence; and

generate an optimized instruction (or iop) sequence
wherein intermediate results designated as last-use are
not stored.

In an embodiment, pairs of candidate instructions are
detected at decode time by processor logic, however other
embodiments are also possible within the scope of the present
invention.

In an embodiment, referring to FIG. 4, each of the pair of
candidate instructions 10, I1 401 have an immediate field.
Instruction Decoders 405 407 pass immediate fields and

10

15

20

25

30

35

40

45

50

55

60

32

information about the instructions they are decoding to the
other decoder 407 405. With the information about the other
instructions, the OAE 409 in combination with optimization
logic 406 408 of each decoder, can cause the immediate fields
to be concatenated in a new instruction. The new instruction
replaces one (or both) of the candidate instructions, and
passes the concatenated field to the execution unit to be
executed out-of-order.

In an embodiment, one of the immediate fields is a sign
extended negative value, in which case the new instruction is
tagged to indicate the high order portion of the concatenated
value must be decremented by 1 at some point in the pipeline
in order to use the concatenated immediate value.

In an embodiment, the pair of candidate instructions have a
common register (preferably, a target register of a producer
instruction that is followed by a consumer instruction having
the same architected register as a source register). The OAE
409 in combination with the optimization logic 406 408 cause
a new instruction to replace one of the candidate instructions
in the pipeline, where the new instruction employs registers of
both candidate instructions in a single new instruction (iop).
In an embodiment the producer-consumer dependency is
eliminated by producing one or two optimized instructions
from the pair of instructions, wherein the produced instruc-
tions can be executed out of order, wherein the consumer
instruction indicates a last-use of the register value such that
for the resulting instruction(s), need not save the consumed
register value.

In an embodiment, a prefix instruction 10 specifies a regis-
ter is a last-use register in another instruction I1 by passing
last-use information between decoder 0 402 and decoder 1
403. In another embodiment, an instruction I1 includes last-
use information.

In an embodiment, last use information is determined in an
instruction decoder 402 403 and decoded instructions 414
415 are tagged with last use indicators to be handled later in
the pipeline, preferably by rename logic associated with
completion logic.

Previously, when a producer and consumer instruction
were optimized, the register value passed from the producer
to the consumer would have to have been saved in order to
conform to the architecture. In an aspect of the present inven-
tion, a last-use indicator provides the processor with the
knowledge that the register value will not be used again
subsequent to the use by the consumer instruction. This
knowledge enables the processor optimization logic to pro-
duce optimized instructions that are faster and reduce
resource contention by not saving the register value.
Generating Optimized Groups of Multiple Decoded Instruc-
tions that can be Executed Out-of-Order:

The instruction sequence

mflrr4 - - -

stdrd, 12,45 - - -
where the “mflr” instruction moves an operand from a special
purpose register (SPR) to R4 register, and the “std” instruc-
tion adds an immediate field value (45) to R2 to form an
effective address (EA) of main storage and the operand at RT
(r4) is stored in memory at a location specified by EA. These
two instructions can be optimized as follows

mtlr r4

stspr Ir, r2, 45
wherein stspr is a newly introduced instruction to store SPRs
directly to memory. This makes “stspr Ir, r2, 45 independent
of the prior mflr instruction and ready to issue immediately.

US 9,311,095 B2

33

In an embodiment optimized for instruction issue, the
sequence is generated as

stspr Ir, r2, 45

mflr r4
making the presumably more critical instruction eligible to
issue prior to the mflr instruction, under the assumption that
the value in r4 will no longer be used. Note however, that mfir
is necessary to preserve the specified semantics in accordance
with the instruction set architecture (ISA).
PowerPC for example, provides instructions used in the
examples:

mfspr
Move from Special-Purpose Register (x'7C00 02A6'")
mfspr rD, SPR

O Reserved
[31 T b] spr* | 339 [0]
0 56 10 11 20 21 30 31

NOTE: *This is a split field.
n < spr[5-9] || spr[0-4]
1D < SPR(n)

In the PowerPC UISA, the SPR field denotes a special-
purpose register, encoded as shown in Table 8-9. The contents
of the designated special purpose register are placed into rD

TABLE 8-9

PowerPC UISA SPR Enodings for mfspr

SPR**
Decimal spr[5-9] spr[0-4] Register Name
1 00000 00001 XER
8 00000 01000 LR
9 00000 01001 CTR
**Note:

The order of the two 5-bit halves of the SFR number is reversed compared with the actual
instruction coding.

If the SPR field contains any value other than one of the
values shown in Table 8-9 (and the processor is in user mode),
one of the following occurs:

The system illegal instruction error handler is invoked.

The system supervisor-level instruction error handler is

invoked.

The results are boundedly undefined.

Other registers altered:

None

Simplified Mnemonics:

mfxer rD equivalent to mfspr rD,1

mflr rD equivalent to mfspr rD,8

mfctr rD equivalent to mfspr rD,9

Store Doubleword DS-form

std RS,DS(RA)

DS

RS RA
11

0
16 30 31

ifRA=0thenb< 0

else b < (RA)

EA < b +EXTS (DS || 0b00)
MEM (EA, 8) < (RS)

w

10

15

20

25

30

35

40

45

50

55

65

34
Let the effective address (EA) be the sum (RAIO)+
(DS||0b00). (RS) is stored into the doubleword in storage
addressed by EA.

Special Registers Altered:

None
Move From Special Purpose Register
XFX-form
mfspr RT, SPR
31 339 /

RT spr
11

6 21

n < spr5:9 || spr0:4

if length(SPR(n)) = 64 then
RT < SPR(m)

else

RT <320 || SPR(n)

The SPR field denotes a Special Purpose Register, encoded as
shown in the table below. The contents of the designated
Special Purpose Register are placed into register RT. For
Special Purpose Registers that are 32 bits long, the low-order
32 bits of RT receive the contents of the Special Purpose
Register and the high-order 32 bits of RT are set to zero.

SPR! Register
decimal spr3:9 spr0:4 Name
1 00000 00001 XER
8 00000 01000 LR
9 00000 01001 CTR
13 00000 01101 AMR
136 00100 01000 CTRL
256 01000 00000 VRSAVE
259 01000 00011 SPRG3
260 01000 00100 SPRG4
261 01000 00101 SPRGS
262 01000 00110 SPRG6
283 01000 00111 SPRG7
268 01000 01100 B
269 01000 01101 TBU
512 10000 00000 SPEFSCR
526 10000 01110 ATB
527 10000 01111 ATBU
896 11100 00000 PPR
898 11100 00010 PPR32

Note that the order of the two 5-bit halves of the SPR number is reversed.

Similarly, the instruction sequence

1drd, 12,45 - - -

mtctr r4

becetr
where “1d” instruction adds the immediate field value (45) to
R2 and uses the result as a main storage address to load an
operand from tihe main storage to R4), the “mtctr” instruction
copies the value in R4 to a counter, and “becetr” branches on a
count in the counter. This sequence can be optimized as
follows

Idspr ctr, r2, 45 - - -

mfctr r4

becetr
Wherein 1dspr is a newly introduced instruction to store SPRs
directly to memory. This eliminates the dependence of beetr
on mtctr, and makes it directly dependent on a load operation
However, to preserve architecture compliance, mfctr to gen-
erate r4 remains a necessary step

US 9,311,095 B2

35

Load Doubleword DS-form

et RT.DS(RA)

DS 0
30 31

RT RA
11

ifRA=0thenb <0

else b < (RA)

EA < b+ EXTS (DS || 0b00)
RT < MEM (EA, §)

Let the effective address (EA) be the sum (RAIO)+
(DS||0b00). The doubleword in storage addressed by EA is
loaded into RT.

Special Registers Altered:

None
Move To Special Purpose Register
XFX-form
mtspr SPR,RS
31 467 /

6 21

RS spr
11

n < spr53:9 || spr0:4

if n =13 then see Book III-S
else

if lenght(SPR(n)) = 64 then
SPR(n) «< (RS)

else

SPR(n) < (RS)32:63

The SPR field denotes a Special Purpose Register, encoded
as shown in the table below. Unless the SPR field contains 13
(denoting the AMR<S>), the contents of register RS are
placed into the designated Special Purpose Register. For Spe-
cial Purpose Registers that are 32 bits long, the low-order 32
bits of RS are placed into the SPR. The AMR (Authority Mask
Register) is used for “storage protection” in the Server envi-
ronment.

SPR! Register
decimal SPI's.o SPTo.a Name
1 00000 00001 XER
8 00000 01000 LR
9 00000 01001 CTR
13 00000 01101 AMR?
256 01000 00000 VRSAVE
512 10000 00000 SPEFSCR?
896 11100 00000 PPR?
898 11100 00010 PPR324

Note that the order of the two 5-bit halves of the SPR number is reversed.
2Category: SPE.

3Category: Server; see Book IIT-S.

4Category: Phased-In. See Section 3.1 of Book II.

5Category: Server: see Book IIT-S.

If execution of this instruction is attempted specifying an
SPR number that is not shown above, or an SPR number that
is shown above but is in a category that is not supported by the
implementation, one of the following occurs.

If spr0=0, the illegal instruction error handler is invoked.

If'spr0=1, the system privileged instruction error handler is

invoked.

10

15

20

25

30

35

40

45

50

55

60

65

Branch Conditional to Count Register
XL-form
BO,BLBH (LK=0)
1 BO,BLBH 1LK=1
19 /i) |BH 528 LK

BO BI
11

6 16 19 |21 31

cond_ok < BOO | (CRBI + 32 = BO1)
if cond_ok then NIA < iea CTR0:61 || 0b00
if LK then LR < iea CIA + 4

BI+32 specifies the Condition Register bit to be tested. The
BO field is used to resolve the branch as described in FIG.
4A2. The BH field is used as described in FIG. 4A4. The
branch target address is CTR0:61||0b00, with the high-order
32 bits of the branch target address set to 0 in 32-bit mode. If
LK=1 then the effective address of the instruction following
the Branch instruction is placed into the Link Register.

If the “decrement and test CTR” option is specified
(BO2=0), the instruction form is invalid.

A preferred embodiment equips programmers a way to
convey when the last-use of a register value has occurred, and
for processor optimization to exploit this information. For
example, the instruction set is extended to provide last-use
information to the processor in one or more instructions. In an
embodiment, an instruction can have a “last-use” indicator
for (at least) one of'its sources (or targets). In an embodiment,
an instruction can have a “next use is last-use” indicator
associated with (at least) one of its outputs. Instruction
decode optimizes instruction sequences, without preserving
intermediate results

FIG A

Previously, dynamic optimization required a sequence of
operations received as part of the executing program’s
instruction stream to be replaced by an improved stream
producing the same outputs in order to comply with instruc-
tion set architecture. Thus, intermediate results which were
computed solely as a function of the instruction set available
to the programmer had to be generated to preserve output
equivalence. This would have had to occur even if no further
use of the intermediate result was present. For example, in a
32 bitarchitecture, a 16 bit immediate field only provides a 16
bit immediate value. If a 32 bit immediate value is needed,
two instructions must be used.

Furthermore, in a computational environment, an instruc-
tion set may not offer a 3-way add instruction to compute 3
operands, for example:

a=a+b+c

forcing the programmer to use multiple instructions to per-
form the computation:

temp<—b+c
a<—a+temp

which must be executed in order since the intermediate result
“temp” is used as a target for the first instruction and a
source for the second instruction. Even when executing on
a processor supporting 3-way add (denoted herein as
ARK3 in its microarchitecture), and when fusing the result,
the decode time instruction optimization will need to gen-
erate a result corresponding to “temp” in its target location,
to ensure the generated optimized sequence is equivalent in
its output

US 9,311,095 B2

37

ARK Rtemp. Rb, Re

AR Ra, Rtemp

which could be translated to optimized internal instructions
that can be executed out of order:

ARK Rtemp. Rb, Re

ARK3 Ra, Ra, Rb, Re

Even though temp will not be subsequently used, if the opti-
mizing processor knew that the Rtemp were not to be used
again, the following sequence would be a sufficient opti-
mization of the programmer’s intent:

ARK3 Ra, Ra, Rb, Re
Aspects of the present invention provide a way for pro-

grammers to provide “last-use” information that temp will

10

38

Whether semantic effect of instruction has been com-
pletely subsumed in its consumer
The “last-use” indicator is set in the consumer (i.e., in
the instruction decoded by decoder 1 in the exemplary
figure) of a dependent instruction sequence, or a “next
use is last-use” indicator is set in the producer (i.e., in
the instruction decoded by decoder 0 in the exemplary
figure) of a dependent instruction sequence
If the determination indicates that both conditions are
met, an exemplary instruction generation is suppresed
in at least one decoder (e.g., decoder 0 in the exem-
plary embodiment)
Exemplary Implementation of Optimization Analysis
Analysis Logic Pseudo Code:

if (((insnO_is_mflr ='1") AND (insnl_is_std ='1")) AND /* mflr followed std*/

(insnO_rt = insnl_rs0))then

/* target of instruction 0 is source of instruction 1 */

recognized_pattern <='1";

pattern <= 0x01;

elsif ((insn0_is_Id ='1") AND (insnl_is_mtlr ='1")) AND /* mfir followed std*/

(insnO_rt = insnl_rs0)) then

/* target of instruction 0 is source of instruction 1 */

recognized_pattern <='1";

pattern <= 0x02;

elsif (((insn0_is_mfetr = '1") AND (insnl_is_std ='1")) AND /* mflr followed std */

(insnO_rt = insnl_rs0)) then

/* target of instruction 0 is source of instruction 1 */

recognized_pattern <='1";

pattern <= 0x03;

elsif ((insn0_is_Id ='1") AND (insnl_is_mtlr ='1")) AND /* mflr followed std */

(insnO_rt = insnl_rs0)) then

/* target of instruction 0 is source of instruction 1 */

recognized_pattern <='1";

pattern <= 0x04;
elsif ...
else

recognized_pattern <='0;

pattern <= 0x00;
end if

not be used again, enabling the ARK3 to be generated to
replace the two source instructions.
Guiding Optimization Generation

In an embodiment, analysis by the processor for optimized
sequence generation may include:

Indication information, indicating whether optimization

can performed

Which of available optimizations can be performed

Instruction data from one input instruction that will be

needed by a second instruction to generate an optimized
sequence, e.g., including, but not limited to register
specifiers, immediate constants, instruction address,
condition and status information, operation codes cor-
responding to one or more input instructions, and so
forth.

While an embodiment having two decoders providing
input to one optimization analysis logic block may be used,
other configurations are possible, including, but not limited
to:

One optimization analysis block connected to more than

two instruction decoders

Multiple optimization analysis blocks, each connected to

all instruction decoders, or a subset of all instruction
decoders

Multiple optimization analysis blocks interconnected to

each other

Blocks can be implemented as distinct logic functions, or

one or more blocks can be combined or subdivided, at
the functional, micro-architectural, logic, circuit or
physical design level(s).

A determination step for each instruction may be per-

formed to determine:

35

40

45

50

55

60

65

In an embodiment, an instruction prefix is employed as
opposed to a prefix instruction. An instruction prefix may be
thought of as an extension to an instruction, thus an instruc-
tion prefix could also be implanted as an instruction suffix. An
instruction prefix to an instruction preferably would provide
information to the instruction it is prefixing, however, itis also
possible to add a prefix to an instruction that provides infor-
mation to an instruction other than the one it is prefixing.
Thus, a prefix instruction is a prefix that is executed in it’s own
right, having it’s own opcode field, wherein an instruction
prefix is executed as part of the instruction it is prefixing, and
is not an independently executable instruction.

In embodiments of prefixes that indicate a last use of a
register in a subsequent instruction, there are two optimiza-
tion embodiments for handling last-use indication prefixes,
that would allow the prefix to be separated from the instruc-
tion on which the last use is indicated:

1—in a first embodiment, the prefix is ignored, and the
instruction can be executed without prefix, and without the
beneficial effects to the register renaming (in an architecture
specification where a last-use indication specifies that a future
read of a last-use’d architected register returns an undefined
value). While this may not be desirable in a high performance
execution, it may be acceptable in a lower-performance
model (either by choice during design by building a cheaper
model that does not have the hardware to handle this prefix, or
even by market segmentation, and deliberate disableing of
hardware that is present to create a lower and a higher per-
formance model), or when boundary conditions are identified
(e.g., an exception happens, or the line buffer runs out of
instruction bytes). It may be easier to build a machine that
discards the prefix in these circumstances, and if the ISA

US 9,311,095 B2

39

architecture specifies that reads to last-use’d registers return
an undefined value, returning that actual register value is
certainly within the bounds of the implementation.

2—1In another embodiment, the last-use indication could
be captures in a program status word (PSW) or configuration
register (CR) and be saved and restored during context
switches, and be used to restart after an exception or context
switch, and have the prefix applied to the pending instruction
after returning from the exception, e.g., with a special return
from interrupt instruction.

ADDITIONAL EXAMPLES (Examples where instruc-
tions have a “last-use” indicator, provided by the programmer
to enable a processor to optimize instructions while not sav-
ing intermediate results that will not be used in a future
instruction. The last-use indicator may be provided in a vari-
ety of ways, for example by an instruction opcode indicating
a register value is a last-use, a field of the instruction associ-
ated with a register field of a register having alast-use, a prefix
instruction indicating a register of a next instruction has a
last-use value and the like):

In accordance with the present invention, an exemplary
new “stspr” instruction is contemplated for the example Pow-
erPC instruction set architecture (ISA) is as follows:

The instruction sequence

mflr<next use of GPR target is last-use>r4

std r4,r2, 45

(Where mflr is a form of the Move From Special Register
instruction based on the SPR bits of the instruction) that
moves the LR to RT (r4) In this case the std r4 register has
been identified as a last-use of the r4 value. The sequence can
be optimized by employing a new ‘Store Special Register’
instruction (stspr):

stspr Ir, r2, 45

Where a new stspr instruction (or iop) adds contents of r2
to the sign extended immediate field (45) to form an effective
address (EA) of main storage and stores a special register LR
at EA. Since r4 was identified as a last use, there is no need to
store a result in r4 in the optimized version.

The instruction sequence:

1d r4, r2, 45

mtctr<last-use of GPR source>r4

bectr

Can be optimized as follows:

Idspr ctr, 12, 45

becetr

where ldspr is a new instruction (or iop) that loads a value to
the CTR special register, the value located at a main storage
EA calculated by adding the contents of r2 to the sign
extended immediate field value (45). Since r4 was identified
as a last use, there is no need to store a result in r4 in the
optimized version.

In fixed-length RISC instruction sets, the number of
opcodes is limited due to the available encoding space. This
has forced architects to limit the number of instructions
accepting immediate values as part of their opcode. However,
using instruction decode time optimization, many sequences
can be optimized. Unfortunately, in several instances, inter-
mediate results must be preserved for architectural correct-
ness. By indicating a last-use, (where the last-use indication
indicates that after this operation, the value should be archi-
tecturally undefined), microarchitects are afforded the benefit
of increased flexibility in capturing computations in opera-
tions including immediate constants, and improve the number
of instructions executed, and reducing cycles per instruction
(CPD.

10

15

20

25

30

35

40

45

50

55

60

65

40
EXAMPLES

In accordance with the present invention, an exemplary
addition to the Power ISA is as follows (combining both types
of indicators).

The instruction sequence

lir5,125

lvx<last-use of r5>v3, r1, 15
where LI is a form of the addis instruction where RA field is
0. The sign extended immediate field value (125) is stored in
RT (r5). The LVX instruction calculates the effective address
(EA) as the sum (RA)+(RB)((r1)+(r5)), obtains the quadword
in storage addressed by the result of EA. ANDs the obtained
quadword with OxFFFF FFFF_FFFF_FFFO and loads the
result into vector RT register (v3).

Can be optimized as follows

Ivd v3,rl, 125

Where lvd is a new instruction (or iop) that calculates the
effective address (EA) by the sum (RA)+(SIMM) ((r1)+125),
obtains the quadword in storage addressed by the result of
EA. ANDs the obtained quadword with OxFFFF_FFFF_
FFFF_FFFO0 and loads the result into vector RT register (v3).
Since r5 was identified as a last-use, there is no need to store
a result in r5 of the optimized version.

Referring to FIG. 4B, an embodiment of an example opti-
mizer 422 is shown. A first instruction 420 and a next sequen-
tial instruction (NSI) 421 are determined to be candidates for
optimization 423. The first example instruction 420 includes
an opcode (OP1) a source register field (RA1), an immediate
field (I1) and a result target field (RT1). The NSI example
instruction 421 includes an opcode (OP2) a source register
field (RA2), an immediate field (I2) and a result target field
(RT2). If they are not optimizable according to the optimiza-
tion criterion, they are executed in order (OP1 426 then OP2
427). If, however, they meet the criterion (including that
RT1=RA2), the NSI is modified by the optimizer 422 to
include a concatenated value of I1 and 12 to produce a new
NSI 425, that can be executed out-of-order relative to the first
instruction 424, preferably the modified NSI has a new effec-
tive opcode (OP2x).

Referring to FIG. 4C, another embodiment of an example
optimizer 422 is shown. A first instruction 430 and a next
sequential instruction (NSI) 431 are determined to be candi-
dates for optimization 433. The first example instruction 430
includes an opcode (OP1) a source register field (RA1),
another source register field (RB1) and a result target field
(RT1). The NSI example instruction 431 includes an opcode
(OP2) a source register field (RA2), another source register
field (RB2) and a result target field (RT2). If they are not
optimizable according to the optimization criterion, they are
executed in order (OP1 436 then OP2 437). If, however, they
meet the criterion (including that RT1=RA2), the NSI is
modified by the optimizer 422 to include RB1 to produce a
new NSI 435, that can be executed out-of-order relative to the
first instruction 434, preferably the modified NSI has a new
effective opcode (OP2x).

Referring to FIG. 4D, another embodiment of an example
optimizer 422 is shown. A first instruction 440 and a next
sequential instruction (NSI) 441 are determined to be candi-
dates for optimization 443. The first example instruction 440
includes an opcode (OP1) and a result target field (RT1). The
NSI example instruction 441 includes an opcode (OP2) a
source register field (RA2), a result target field (RT2) and an
immediate field (12), wherein execution of the NSI 441 adds
the operand at RA2 to the immediate field (12) to create an
effective address (EA) of main storage. A last-use indicator is
associated with the NSI instruction 441 indicating the result

US 9,311,095 B2

41

register RT2* operand will not be used again. If the pair of
instructions 440 441 are not optimizable according to the
optimization criterion, they are executed in order (OP1 446
then OP2 447). If, however, they 440 441 meet the criterion
(including that RT1=RT2), the NSI 441 is modified by the
optimizer 422 to produce a new NSI 445 having a new opcode
(OP3) and a function field (FN2), the FN2 field identifying
the special register of the first instruction 440 wherein the new
NST 445 stores the special register identified by the FN2 field
at the EA calculate by use of RA2 and 12. Whether the 2
instructions 440 441 are optimizable or not, execution of the
new NSI instruction 445 or the original NSI instruction 447
causes a last-use function to be performed on the RT2 archi-
tected register.

Referring to FIG. 4E, another embodiment of an example
optimizer 422 is shown. A first instruction 450 and a next
sequential instruction (NSI) 411 are determined to be candi-
dates for optimization 453. The first example instruction 450
includes an opcode (OP1), two source register fields (RA1,
RB1) and result target field (RT1). The NSI example instruc-
tion 451 includes an opcode (OP2) two source register fields
(RA2*. RB2), and a result target field (RT2), wherein execu-
tion of the pair of instructions 450 451 performs an operation
on 3 operands (RA1, RB1 and RB2) and stores a result in
result register (RT2). A last-use indicator is associated with
the NSI instruction 451 indicating the source register RA2*
operand will not be used again. If the pair of instructions 450
451 are not optimizable according to the optimization crite-
rion, they are executed in order (OP1 456 then OP2 457). If,
however, they 440 441 meet the criterion (including that
RT1=RA2), the NSI 451 is modified by the optimizer 422 to
produce a new NSI 455 having a new opcode (OP2x) and
three operands (RA1, RB2 and RB1). Whether the 2 instruc-
tions 450 451 are optimizable or not, execution of the new
NSTinstruction 455 or the original NSI instruction 457 causes
a last-use function to be performed on the RA2 architected
register.

Thus, referring to FIG. 5, two instructions are fetched 501
for execution in an embodiment, two instructions to be
executed are determined to be candidates for optimization
502 to a single optimized internal instruction, the two instruc-
tions comprising a first instruction identifying a first operand
as a target operand and a second instruction identifying the
first operand as a source operand, the first instruction preced-
ing the second instruction in program order. The first operand
is determined to be specified as a last-use operand 503. The
single optimized internal instruction is created 504 based on
the two instructions, wherein the single optimized internal
instruction does not specify the first operand. The single
optimized internal instruction is executed 505 instead of the
two instructions.

Referring to FIG. 6, in an embodiment, the first instruction
includes a first immediate field and the second instruction
comprises a second immediate field. At least part of the first
immediate field is concatenated 601 with at least a part of the
second immediate field to create a combined immediate field
of the single optimized internal instruction.

In an embodiment, the single optimized internal instruc-
tion is created 602 responsive to the at least part of the first
immediate field or the at least a part of the second immediate
field forming most significant bits of the combined immediate
field have a predetermined number of high order 0’s.

In an embodiment, it is determined 603 that the at least part
of the first immediate field or the at least part of the second
immediate field used forming least significant bits of the
combined immediate field is a negative value, and an indica-
tion is provided 604, preferably to a pipeline, that a 1 must be

25

30

40

45

50

55

42

subtract from most significant bits of the combined immedi-
ate field for executing the single optimized internal instruc-
tion.

In an embodiment, the first instruction includes a first
immediate field and the second instruction comprises a sec-
ond immediate field. The two instructions to be executed are
determined 701 to be candidates for optimization to two
optimized internal instructions rather than being candidates
for optimization to the single optimized internal instruction,
the two instructions comprising the first instruction identify-
ing the first operand as a target operand and the second
instruction identifying the first operand as the source operand,
the first instruction preceding the second instruction in pro-
gram order. A first internal instruction is created 702 based on
the first instruction. At least part of the first immediate field is
concatenated with at least a part of the second immediate field
to create 703 a combined immediate field of an optimized
second internal instruction wherein out-of-order execution of
the first internal instruction and the optimized internal second
instruction is permitted 706 rather than in-order execution of
the two instructions.

In an embodiment, the first instruction includes 704 a first
register field and the second instruction comprises a second
register field wherein, the first register field and the second
register field are included in the created single optimized
internal instruction.

In an embodiment, the first instruction is a prefix instruc-
tion for specifying 705 the first operand of the second instruc-
tion as a last-use operand.

Preferably, an indication of which architected registers are
enabled or not enabled is saved for a program (X) being
interrupted, and an indication of which architected registers
are enabled or not enabled is obtained from the for new
program (Y) is fetched during a context switch to a save area,
such as an architected register or a main storage location
available to an operating system (OS). The indication may be
a bit significant field where each bit corresponds to an archi-
tected register entry, or a range, or otherwise indicating the
enabled/active architected registers. In an embodiment, only
a subset, determined by the OS, may be enabled. In an
embodiment each thread of a multi-threaded processor has
it’s own set of enabled, disabled indicators. In another
embodiment, the value of active indicators of an active pro-
gram or thread can be explicitly set by machine instructions
available to the active program or thread.

In an embodiment, an access to a disable architected reg-
ister causes a program exception to be indicated.

In an embodiment, a disabled architected register is
enabled by execution of a register enabling instruction that
does not write to the disabled architected register.

In a commercial implementation of functions and instruc-
tions, such as operating system programmers writing in
assembler language. These instruction formats stored in a
storage medium 114 (also known as main storage or main
memory) may be executed natively in a z/Architecture IBM
Server, PowerPC IBM server, or alternatively, in machines
executing other architectures. They can be emulated in the
existing and in future IBM servers and on other machines of
IBM (e.g. pSeries® Servers and xSeries® Servers). They can
be executed in machines where generally execution is in an
emulation mode.

In an embodiment, instructions and functions defined for a
fist processor designed for an instruction set architecture
(ISA) are emulated on a second processor having a different
ISA. Machine instructions of a first ISA for example, are
translated to emulation program routines employing machine
instructions and functions of a second ISA. The emulation

US 9,311,095 B2

43

program, running on the second processor, runs programs
written to the first ISA by fetching machine instructions of the
program, translating the fetched machine instructions to pro-
gram modules comprising machine instructions of the second
ISA and then executing the program modules on the second
processor designed to the second ISA.

In emulation mode, the specific instruction being emulated
is decoded, and a subroutine is built to implement the indi-
vidual instruction, as in a C subroutine or driver, or some
other technique is used for providing a driver for the specific
hardware, as is within the skill of those in the art after under-
standing the description of an embodiment of the invention.

Moreover, the various embodiments described above are
just examples. There may be many variations to these
embodiments without departing from the spirit of the present
invention. For instance, although a logically partitioned envi-
ronment may be described herein, this is only one example.
Aspects of the invention are beneficial to many types of
environments, including other environments that have a plu-
rality of zones, and non-partitioned environments. Further,
there may be no central processor complexes, but yet, mul-
tiple processors coupled together. Yet further, one or more
aspects of the invention are applicable to single processor
environments.

Although particular environments are described herein,
again, many variations to these environments can be imple-
mented without departing from the spirit of the present inven-
tion. For example, if the environment is logically partitioned,
then more or fewer logical partitions may be included in the
environment. Further, there may be multiple central process-
ing complexes coupled together. These are only some of the
variations that can be made without departing from the spirit
of the present invention. Additionally, other variations are
possible. For example, although the controller described
herein serializes the instruction so that one IDTE instruction
executes at one time, in another embodiment, multiple
instructions may execute at one time. Further, the environ-
ment may include multiple controllers. Yet further, multiple
quiesce requests (from one or more controllers) may be con-
currently outstanding in the system. Additional variations are
also possible.

As used herein, the term “processing unit” includes page-
able entities, such as guests; processors; emulators; and/or
other similar components. Moreover, the term “by a process-
ing unit” includes on behalf of a processing unit. The term
“buffer” includes an area of storage, as well as different types
of'data structures, including, but not limited to, arrays: and the
term “table” can include other than table type data structures.
Further, the instruction can include other than registers to
designate information. Moreover, a page, a segment and/or a
region can be of sizes different than those described herein.

One or more of the capabilities of the present invention can
be implemented in software, firmware, hardware, or some
combination thereof. Further, one or more of the capabilities
can be emulated.

One or more aspects of the present invention can be
included in an article of manufacture (e.g., one or more com-
puter program products) having, for instance, computer
usable media. The media has embodied therein, for instance,
computer readable program code means or logic (e.g.,
instructions, code, commands, etc.) to provide and facilitate
the capabilities of the present invention. The article of manu-
facture can be included as a part of a computer system or sold
separately. The media (also known as a tangible storage
medium) may be implemented on a storage device 120 as
fixed or portable media, in read-only-memory (ROM) 116, in

25

40

45

55

65

44
random access memory (RAM) 114, or stored on a computer
chip of a CPU (110), an /O adapter 118 for example.

Additionally, at least one program storage device 120 com-
prising storage media, readable by a machine embodying at
least one program of instructions executable by the machine
to perform the capabilities of the present invention can be
provided.

The flow diagrams depicted herein are just examples.
There may be many variations to these diagrams or the steps
(or operations) described therein without departing from the
spirit of the invention. For instance, the steps may be per-
formed in a differing order, or steps may be added, deleted or
modified. All of these variations are considered a part of the
claimed invention.

Although preferred embodiments have been depicted and
described in detail herein, it will be apparent to those skilled
in the relevant art that various modifications, additions, sub-
stitutions and the like can be made without departing from the
spirit of the invention and these are therefore considered to be
within the scope of the invention as defined in the following
claims.

What is claimed is:

1. A computer system for optimizing instructions to be
executed, the system comprising:

a processor, the processor comprising an instruction
fetcher, an instruction decoder and an execution unit, the
processor configured to perform a method comprising:

fetching two instructions for execution;

determining that the two instructions to be executed are
candidates for optimization to a single optimized inter-
nal instruction, the two instructions comprising a first
instruction identifying a first operand as a target operand
and a second instruction identifying, the first operand as
a source operand, the first instruction preceding the sec-
ond instruction in program order;

determining that the first operand is specified as a last-use
operand that is not used after execution of the second
instruction;

creating the single optimized internal instruction based on
the two instructions, wherein the single optimized inter-
nal instruction does not specify the first operand; and

executing the single optimized internal instruction instead
of the two instructions.

2. The system according to claim 1, wherein the first
instruction includes a first immediate field and the second
instruction comprises a second immediate field, the method
further comprising:

concatenating at least part of the first immediate field with
at least part of the second immediate field to create a
combined immediate field of the single optimized inter-
nal instruction.

3. The system according to claim 2, wherein the single
optimized internal instruction is created based on the at least
part of the first immediate field or the at least part of the
second immediate field forming most significant bits of the
combined immediate field having a predetermined number of
high order 0’s.

4. The system according to claim 2, wherein concatenating
further comprises:

determining that the at least part of the first immediate field
or the at least part of the second immediate field used
forming least significant bits of the combined in field is
a negative value; and

providing an indication that a 1 must be subtracted from
most significant bits of the combined immediate field for
executing the single optimized internal instruction.

US 9,311,095 B2

45

5. The system according to claim 1, wherein the first
instruction includes a first immediate field and the second
instruction comprises a second immediate field, the method
further comprising:

determining that the two instructions to be executed are

candidates for optimization to two optimized internal
instructions rather than being candidates for optimiza-
tion to the single optimized internal instruction, the two
instructions comprising the first instruction identifying
the first operand as a target operand and the second
instruction identifying the first operand as the source
operand, the first instruction preceding the second
instruction in program order;

based on the first instruction, creating a first internal

instruction;

based on the second instruction, concatenating at least part

of'the first immediate field with at least part of the second
immediate field to create a combined immediate field of
an optimized second internal instruction; and
permitting out-of-order execution of the first internal
instruction and the optimized internal second instruction
rather than in-order execution of the two instructions.

6. The system according to claim 1, wherein the first
instruction includes a first register field and the second
instruction comprises a second register field, the method fur-
ther comprising:

including the first register field and the second register field

in the created single optimized internal instruction.
7. The system according to claim 1, wherein the first
instruction is a prefix instruction for specifying the first oper-
and of the second instruction as a last-use operand.
8. A computer program product for executing instructions,
the computer program product comprising a non-transitory
storage medium readable by a processing circuit and storing
instructions for execution by the processing circuit for per-
forming a method comprising:
fetching two instructions for execution:
determining, by a processor, that the two instructions to be
executed are candidates for optimization to a single opti-
mized internal instruction, the two instructions compris-
ing a first instruction identifying a first operand as a
target operand and a second instruction identifying the
first operand as a source operand, the first instruction
preceding the second instruction in program order;

determining that the first operand is specified as a last-use
operand that is not used after execution of the second
instruction;

creating, by the processor, the single optimized internal

instruction based on the two instructions, wherein the
single optimized internal instruction does not specify the
first operand; and

executing the single optimized internal instruction instead

of the two instructions.

9. The computer program product according to claim 8,
wherein the first instruction includes a first immediate field
and the second instruction comprises a. second. immediate
field, the method further comprising:

10

20

25

30

40

50

46

concatenating at least part of the first immediate field with
at least part of the second immediate field to create a
combined immediate field of the single optimized inter-
nal instruction.

10. The computer program product according to claim 9,
wherein the single optimized internal instruction is created
based on the at least part of the first immediate field or the at
least part of the second immediate field forming most signifi-
cant bits of the combined immediate field haying a predeter-
mined number of high order 0’s.

11. The computer program product according to claim 9,
wherein concatenating further comprises:

determining that the at least part of the first immediate field

or the at least part of the second immediate field used
forming least significant bits of the combined immediate
field is a. negative value; and

providing an indication that a 1 must be subtracted from

most significant bits of the combined immediate field for
executing the single optimized internal instruction.

12. The computer program product according to claim 8,
wherein the first instruction includes a first immediate field
and the second instruction comprises a second immediate
field, that method further comprising:

determining that the two instructions to be executed are

candidates for optimization to two optimized internal
instructions rather than being candidates for optimiza-
tion to the single optimized internal instruction, the two
instructions comprising the first instruction identifying
the first operand as a target operand and the second
instruction identifying the first operand as the source
operand, the first instruction preceding the second
instruction in program order;

based on the first instruction, creating a first internal

instruction;

based on the second instruction, concatenating at least part

of'the firstimmediate field with at least part of the second
immediate field to create a combined immediate field of
an optimized second internal instruction; and
permitting out-of-order execution of the first internal
instruction and the optimized internal second instruction
rather than in-order execution of the two instructions.

13. The computer program product according to claim 8,
wherein the first instruction includes a first register field and
the second instruction comprises a second register field, the
method further comprising:

including the first register field and the second register field

in the created single optimized internal instruction.

14. The computer program product according to claim 8,
wherein the first instruction is a prefix instruction for speci-
fying the first operand of the second instruction as a last-use
operand.

15. The system according to claim 1. wherein one of the
two instructions contains a last-use indicator specifying the
first operand as a last-use operand that is not used after execu-
tion of the second instruction.

16. The computer program product according to claim 8,
wherein one of the two instructions contains a last-use indi-
cator specifying the first operand as a last-use operand that is
not used after execution of the second instruction.

#* #* #* #* #*

